Kleinian groups of small Hausdorff dimension are classical Schottky groups. I
Geometry & topology, Tome 14 (2010) no. 1, pp. 473-519.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

It has been conjectured that the Hausdorff dimensions of nonclassical Schottky groups are strictly bounded from below. In this first part of our work on this conjecture, we prove that there exists a universal positive number λ greater than 0 such that any 2–generated nonelementary Kleinian group with limit set of Hausdorff dimension less than λ is a classical Schottky group.

DOI : 10.2140/gt.2010.14.473
Keywords: Schottky group, Kleinian group, Hausdorff dimension, limit set

Hou, Yong 1

1 Department of Mathematics, North Dakota State University, Fargo, ND 58108, USA
@article{GT_2010_14_1_a9,
     author = {Hou, Yong},
     title = {Kleinian groups of small {Hausdorff} dimension are classical {Schottky} groups. {I}},
     journal = {Geometry & topology},
     pages = {473--519},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2010},
     doi = {10.2140/gt.2010.14.473},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.473/}
}
TY  - JOUR
AU  - Hou, Yong
TI  - Kleinian groups of small Hausdorff dimension are classical Schottky groups. I
JO  - Geometry & topology
PY  - 2010
SP  - 473
EP  - 519
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.473/
DO  - 10.2140/gt.2010.14.473
ID  - GT_2010_14_1_a9
ER  - 
%0 Journal Article
%A Hou, Yong
%T Kleinian groups of small Hausdorff dimension are classical Schottky groups. I
%J Geometry & topology
%D 2010
%P 473-519
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.473/
%R 10.2140/gt.2010.14.473
%F GT_2010_14_1_a9
Hou, Yong. Kleinian groups of small Hausdorff dimension are classical Schottky groups. I. Geometry & topology, Tome 14 (2010) no. 1, pp. 473-519. doi : 10.2140/gt.2010.14.473. http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.473/

[1] I Agol, Tameness of hyperbolic $3$–manifolds

[2] A F Beardon, The geometry of discrete groups, Graduate Texts in Math. 91, Springer (1983)

[3] P G Doyle, On the bass note of a Schottky group, Acta Math. 160 (1988) 249

[4] Y Hou, Critical exponent and displacement of negatively curved free groups, J. Differential Geom. 57 (2001) 173

[5] A Marden, Schottky groups and circles, from: "Contributions to analysis (a collection of papers dedicated to Lipman Bers)" (editors L V Ahlfors, I Kra, B Maskit, L Nirenberg), Academic Press (1974) 273

[6] D Mumford, C Series, D Wright, Indra's pearls. The vision of Felix Klein, Cambridge Univ. Press (2002)

[7] R S Phillips, P Sarnak, The Laplacian for domains in hyperbolic space and limit sets of Kleinian groups, Acta Math. 155 (1985) 173

Cité par Sources :