Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
It has been conjectured that the Hausdorff dimensions of nonclassical Schottky groups are strictly bounded from below. In this first part of our work on this conjecture, we prove that there exists a universal positive number greater than such that any –generated nonelementary Kleinian group with limit set of Hausdorff dimension less than is a classical Schottky group.
Hou, Yong 1
@article{GT_2010_14_1_a9, author = {Hou, Yong}, title = {Kleinian groups of small {Hausdorff} dimension are classical {Schottky} groups. {I}}, journal = {Geometry & topology}, pages = {473--519}, publisher = {mathdoc}, volume = {14}, number = {1}, year = {2010}, doi = {10.2140/gt.2010.14.473}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.473/} }
TY - JOUR AU - Hou, Yong TI - Kleinian groups of small Hausdorff dimension are classical Schottky groups. I JO - Geometry & topology PY - 2010 SP - 473 EP - 519 VL - 14 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.473/ DO - 10.2140/gt.2010.14.473 ID - GT_2010_14_1_a9 ER -
Hou, Yong. Kleinian groups of small Hausdorff dimension are classical Schottky groups. I. Geometry & topology, Tome 14 (2010) no. 1, pp. 473-519. doi : 10.2140/gt.2010.14.473. http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.473/
[1] Tameness of hyperbolic $3$–manifolds
,[2] The geometry of discrete groups, Graduate Texts in Math. 91, Springer (1983)
,[3] On the bass note of a Schottky group, Acta Math. 160 (1988) 249
,[4] Critical exponent and displacement of negatively curved free groups, J. Differential Geom. 57 (2001) 173
,[5] Schottky groups and circles, from: "Contributions to analysis (a collection of papers dedicated to Lipman Bers)" (editors L V Ahlfors, I Kra, B Maskit, L Nirenberg), Academic Press (1974) 273
,[6] Indra's pearls. The vision of Felix Klein, Cambridge Univ. Press (2002)
, , ,[7] The Laplacian for domains in hyperbolic space and limit sets of Kleinian groups, Acta Math. 155 (1985) 173
, ,Cité par Sources :