Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show that the set of –dimensional isoperimetric exponents of finitely presented groups is dense in the interval for . Hence there is no higher-dimensional analogue of Gromov’s gap in the isoperimetric spectrum.
Brady, Noel 1 ; Forester, Max 1
@article{GT_2010_14_1_a8, author = {Brady, Noel and Forester, Max}, title = {Density of isoperimetric spectra}, journal = {Geometry & topology}, pages = {435--472}, publisher = {mathdoc}, volume = {14}, number = {1}, year = {2010}, doi = {10.2140/gt.2010.14.435}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.435/} }
Brady, Noel; Forester, Max. Density of isoperimetric spectra. Geometry & topology, Tome 14 (2010) no. 1, pp. 435-472. doi : 10.2140/gt.2010.14.435. http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.435/
[1] Second order Dehn functions of groups, Quart. J. Math. Oxford Ser. $(2)$ 49 (1998) 1
, , , , ,[2] Higher-dimensional isoperimetric (or Dehn) functions of groups, J. Group Theory 2 (1999) 81
, , ,[3] A short proof that a subquadratic isoperimetric inequality implies a linear one, Michigan Math. J. 42 (1995) 103
,[4] There is only one gap in the isoperimetric spectrum, Geom. Funct. Anal. 10 (2000) 1053
, ,[5] Snowflake groups, Perron–Frobenius eigenvalues and isoperimetric spectra, Geom. Topol. 13 (2009) 141
, , , ,[6] The geometry of the word problem, from: "Invitations to geometry and topology" (editors M R Bridson, S M Salamon), Oxf. Grad. Texts Math. 7, Oxford Univ. Press (2002) 29
,[7] Polynomial Dehn functions and the length of asynchronously automatic structures, Proc. London Math. Soc. $(3)$ 85 (2002) 441
,[8] A geometric approach to homology theory, London Math. Soc. Lecture Note Ser. 18, Cambridge Univ. Press (1976)
, , ,[9] Equivalence of geometric and combinatorial Dehn functions, New York J. Math. 8 (2002) 169
, ,[10] Foliations and the geometry of $3$–manifolds, Oxford Math. Monogr., Oxford Univ. Press (2007)
,[11] The degree of a map, Proc. London Math. Soc. $(3)$ 16 (1966) 369
,[12] Coarse differentiation of quasi-isometries I: spaces not quasi-isometric to Cayley graphs
, , ,[13] A rigidity theorem for the solvable Baumslag–Solitar groups, Invent. Math. 131 (1998) 419
, ,[14] On the asymptotic geometry of abelian-by-cyclic groups, Acta Math. 184 (2000) 145
, ,[15] Partial differential relations, Ergebnisse der Math. und ihrer Grenzgebiete (3) 9, Springer (1986)
,[16] Hyperbolic groups, from: "Essays in group theory" (editor S M Gersten), Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75
,[17] Metric structures for Riemannian and non-Riemannian spaces, Progress in Math. 152, Birkhäuser (1999)
,[18] On Dehn functions of free products of groups, Proc. Amer. Math. Soc. 127 (1999) 1885
, ,[19] Zur Topologie der Abbildungen von Mannigfaltigkeiten, Math. Ann. 102 (1930) 562
,[20] Hyperbolicity of groups with subquadratic isoperimetric inequality, Internat. J. Algebra Comput. 1 (1991) 281
,[21] On the sub-quadratic isoperimetric inequality, from: "Geometric group theory (Columbus, OH, 1992)" (editors R Charney, M Davis, M Shapiro), Ohio State Univ. Math. Res. Inst. Publ. 3, de Gruyter (1995) 149
,[22] Isodiametric and isoperimetric inequalities for complexes and groups, J. London Math. Soc. $(2)$ 62 (2000) 97
,[23] Presentations and the trivial group, from: "Topology of low-dimensional manifolds (Proc. Second Sussex Conf., Chelwood Gate, 1977)" (editor R A Fenn), Lecture Notes in Math. 722, Springer (1979) 134
,[24] Isoperimetric and isodiametric functions of groups, Ann. of Math. $(2)$ 156 (2002) 345
, , ,[25] A graph-theoretic lemma and group-embeddings, from: "Combinatorial group theory and topology (Alta, Utah, 1984)", Ann. of Math. Stud. 111, Princeton Univ. Press (1987) 145
,[26] Second order Dehn functions of finitely presented groups and monoids, PhD thesis, University of Glasgow (1996)
,[27] Second order Dehn functions and HNN–extensions, J. Austral. Math. Soc. Ser. A 67 (1999) 272
, ,[28] Homological and homotopical higher-order filling functions, to appear in Groups Geom. Dyn.
,Cité par Sources :