Density of isoperimetric spectra
Geometry & topology, Tome 14 (2010) no. 1, pp. 435-472.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that the set of k–dimensional isoperimetric exponents of finitely presented groups is dense in the interval {t |t 1} for k 2. Hence there is no higher-dimensional analogue of Gromov’s gap (1,2) in the isoperimetric spectrum.

DOI : 10.2140/gt.2010.14.435
Keywords: Dehn function, isoperimetric inequality, filling invariant, isoperimetric spectrum, high dimensional Dehn function, abelian-by-cyclic, admissible map, transverse map, generalized handle decomposition

Brady, Noel 1 ; Forester, Max 1

1 Mathematics Department, University of Oklahoma, Norman, OK 73019, USA
@article{GT_2010_14_1_a8,
     author = {Brady, Noel and Forester, Max},
     title = {Density of isoperimetric spectra},
     journal = {Geometry & topology},
     pages = {435--472},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2010},
     doi = {10.2140/gt.2010.14.435},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.435/}
}
TY  - JOUR
AU  - Brady, Noel
AU  - Forester, Max
TI  - Density of isoperimetric spectra
JO  - Geometry & topology
PY  - 2010
SP  - 435
EP  - 472
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.435/
DO  - 10.2140/gt.2010.14.435
ID  - GT_2010_14_1_a8
ER  - 
%0 Journal Article
%A Brady, Noel
%A Forester, Max
%T Density of isoperimetric spectra
%J Geometry & topology
%D 2010
%P 435-472
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.435/
%R 10.2140/gt.2010.14.435
%F GT_2010_14_1_a8
Brady, Noel; Forester, Max. Density of isoperimetric spectra. Geometry & topology, Tome 14 (2010) no. 1, pp. 435-472. doi : 10.2140/gt.2010.14.435. http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.435/

[1] J M Alonso, W A Bogley, R M Burton, S J Pride, X Wang, Second order Dehn functions of groups, Quart. J. Math. Oxford Ser. $(2)$ 49 (1998) 1

[2] J M Alonso, X Wang, S J Pride, Higher-dimensional isoperimetric (or Dehn) functions of groups, J. Group Theory 2 (1999) 81

[3] B H Bowditch, A short proof that a subquadratic isoperimetric inequality implies a linear one, Michigan Math. J. 42 (1995) 103

[4] N Brady, M R Bridson, There is only one gap in the isoperimetric spectrum, Geom. Funct. Anal. 10 (2000) 1053

[5] N Brady, M R Bridson, M Forester, K Shankar, Snowflake groups, Perron–Frobenius eigenvalues and isoperimetric spectra, Geom. Topol. 13 (2009) 141

[6] M R Bridson, The geometry of the word problem, from: "Invitations to geometry and topology" (editors M R Bridson, S M Salamon), Oxf. Grad. Texts Math. 7, Oxford Univ. Press (2002) 29

[7] M R Bridson, Polynomial Dehn functions and the length of asynchronously automatic structures, Proc. London Math. Soc. $(3)$ 85 (2002) 441

[8] S Buoncristiano, C P Rourke, B J Sanderson, A geometric approach to homology theory, London Math. Soc. Lecture Note Ser. 18, Cambridge Univ. Press (1976)

[9] J Burillo, J Taback, Equivalence of geometric and combinatorial Dehn functions, New York J. Math. 8 (2002) 169

[10] D Calegari, Foliations and the geometry of $3$–manifolds, Oxford Math. Monogr., Oxford Univ. Press (2007)

[11] D B A Epstein, The degree of a map, Proc. London Math. Soc. $(3)$ 16 (1966) 369

[12] A Eskin, D Fisher, K Whyte, Coarse differentiation of quasi-isometries I: spaces not quasi-isometric to Cayley graphs

[13] B Farb, L Mosher, A rigidity theorem for the solvable Baumslag–Solitar groups, Invent. Math. 131 (1998) 419

[14] B Farb, L Mosher, On the asymptotic geometry of abelian-by-cyclic groups, Acta Math. 184 (2000) 145

[15] M Gromov, Partial differential relations, Ergebnisse der Math. und ihrer Grenzgebiete (3) 9, Springer (1986)

[16] M Gromov, Hyperbolic groups, from: "Essays in group theory" (editor S M Gersten), Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75

[17] M Gromov, Metric structures for Riemannian and non-Riemannian spaces, Progress in Math. 152, Birkhäuser (1999)

[18] V S Guba, M V Sapir, On Dehn functions of free products of groups, Proc. Amer. Math. Soc. 127 (1999) 1885

[19] H Hopf, Zur Topologie der Abbildungen von Mannigfaltigkeiten, Math. Ann. 102 (1930) 562

[20] A Y Ol′Shanskiĭ, Hyperbolicity of groups with subquadratic isoperimetric inequality, Internat. J. Algebra Comput. 1 (1991) 281

[21] P Papasoglu, On the sub-quadratic isoperimetric inequality, from: "Geometric group theory (Columbus, OH, 1992)" (editors R Charney, M Davis, M Shapiro), Ohio State Univ. Math. Res. Inst. Publ. 3, de Gruyter (1995) 149

[22] P Papasoglu, Isodiametric and isoperimetric inequalities for complexes and groups, J. London Math. Soc. $(2)$ 62 (2000) 97

[23] C P Rourke, Presentations and the trivial group, from: "Topology of low-dimensional manifolds (Proc. Second Sussex Conf., Chelwood Gate, 1977)" (editor R A Fenn), Lecture Notes in Math. 722, Springer (1979) 134

[24] M V Sapir, J C Birget, E Rips, Isoperimetric and isodiametric functions of groups, Ann. of Math. $(2)$ 156 (2002) 345

[25] J R Stallings, A graph-theoretic lemma and group-embeddings, from: "Combinatorial group theory and topology (Alta, Utah, 1984)", Ann. of Math. Stud. 111, Princeton Univ. Press (1987) 145

[26] X Wang, Second order Dehn functions of finitely presented groups and monoids, PhD thesis, University of Glasgow (1996)

[27] X Wang, S J Pride, Second order Dehn functions and HNN–extensions, J. Austral. Math. Soc. Ser. A 67 (1999) 272

[28] R Young, Homological and homotopical higher-order filling functions, to appear in Groups Geom. Dyn.

Cité par Sources :