Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We develop a geometric approach to the study of plane sextics with a triple singular point. As an application, we give an explicit geometric description of all irreducible maximal sextics with a type singular point and compute their fundamental groups. All groups found are finite; one of them is nonabelian.
Degtyarev, Alex 1
@article{GT_2010_14_1_a7, author = {Degtyarev, Alex}, title = {Plane sextics via dessins d{\textquoteright}enfants}, journal = {Geometry & topology}, pages = {393--433}, publisher = {mathdoc}, volume = {14}, number = {1}, year = {2010}, doi = {10.2140/gt.2010.14.393}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.393/} }
Degtyarev, Alex. Plane sextics via dessins d’enfants. Geometry & topology, Tome 14 (2010) no. 1, pp. 393-433. doi : 10.2140/gt.2010.14.393. http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.393/
[1] Braid monodromy and topology of plane curves, Duke Math. J. 118 (2003) 261
, , ,[2] Isotopic classification of complex plane projective curves of degree $5$, Algebra i Analiz 1 (1989) 78
,[3] Quintics in $\mathbf{C}\mathrm{P}^2$ with nonabelian fundamental group, Algebra i Analiz 11 (1999) 130
,[4] Fundamental groups of symmetric sextics, J. Math. Kyoto Univ. 48 (2008) 765
,[5] Oka's conjecture on irreducible plane sextics, J. Lond. Math. Soc. $(2)$ 78 (2008) 329
,[6] On deformations of singular plane sextics, J. Algebraic Geom. 17 (2008) 101
,[7] Stable symmetries of plane sextics, Geom. Dedicata 137 (2008) 199
,[8] Fundamental groups of symmetric sextics. II, Proc. London Math. Soc. (3) 99 (2009) 353
,[9] Irreducible plane sextics with large fundamental groups, J. Math. Soc. Japan 61 (2009) 1131
,[10] Zariski $k$–plets via dessins d'enfants, Comment. Math. Helv. 84 (2009) 639
,[11] On deformation types of real elliptic surfaces, Amer. J. Math. 130 (2008) 1561
, , ,[12] A plane sextic with finite fundamental group, from: "Proc. of Niigata–Toyama Conferences 2007", to appear in Adv. Stud. Pure Math., Math. Soc. Japan
, ,[13] On the fundamental groups of the complements of plane singular sextics, J. Math. Soc. Japan 57 (2005) 37
, ,[14] Alexander-equivalent Zariski pairs of irreducible sextics
, ,[15] On the geometry of certain irreducible non-torus plane sextics, to appear in Kodai Math. J.
, ,[16] A proof of a conjecture of Degtyarev on non-torus plane sextics, from: "Proc. of Niigata–Toyama Conferences 2007", to appear in Adv. Stud. Pure Math., Math. Soc. Japan
, ,[17] On the topology of noncomplete algebraic surfaces, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 29 (1982) 503
,[18] \ttGAP – Groups, Algorithms, and Programming, Version 4.4.10 (2007)
,[19] Triple covers of algebraic surfaces and a generalization of Zariski's example, from: "Proc. of Niigata–Toyama Conferences 2007", to appear in Adv. Stud. Pure Math., Math. Soc. Japan
, ,[20] On the fundamental group of an algebraic curve, Amer. J. Math. 55 (1933) 255
,[21] The complement of the bifurcation variety of a simple singularity, Invent. Math. 23 (1974) 105
,[22] Riemann existence theorem and construction of real algebraic curves, Ann. Fac. Sci. Toulouse Math. $(6)$ 12 (2003) 517
,[23] Classical Zariski pairs with nodes, dissertation, Bilkent University (2007)
,[24] Double sextics and singular $K3$ surfaces, from: "Algebraic geometry, Sitges (Barcelona), 1983" (editors E Casas-Alvero, G E Welters, S Xambó-Descamps), Lecture Notes in Math. 1124, Springer (1985) 262
,[25] Lattice Zariski pairs of plane sextic curves and splitting curves for double plane sextics, to appear in Michigan Math. J.
,[26] On the connected components of the moduli of polarized $K3$ surfaces, Preprint
,[27] Sextic curves with simple singularities, Tohoku Math. J. $(2)$ 48 (1996) 203
,Cité par Sources :