Plane sextics via dessins d’enfants
Geometry & topology, Tome 14 (2010) no. 1, pp. 393-433.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We develop a geometric approach to the study of plane sextics with a triple singular point. As an application, we give an explicit geometric description of all irreducible maximal sextics with a type E7 singular point and compute their fundamental groups. All groups found are finite; one of them is nonabelian.

DOI : 10.2140/gt.2010.14.393
Keywords: plane sextic, fundamental group, trigonal curve, dessin d'enfant

Degtyarev, Alex 1

1 Department of Mathematics, Bilkent University, 06800 Ankara, Turkey
@article{GT_2010_14_1_a7,
     author = {Degtyarev, Alex},
     title = {Plane sextics via dessins d{\textquoteright}enfants},
     journal = {Geometry & topology},
     pages = {393--433},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2010},
     doi = {10.2140/gt.2010.14.393},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.393/}
}
TY  - JOUR
AU  - Degtyarev, Alex
TI  - Plane sextics via dessins d’enfants
JO  - Geometry & topology
PY  - 2010
SP  - 393
EP  - 433
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.393/
DO  - 10.2140/gt.2010.14.393
ID  - GT_2010_14_1_a7
ER  - 
%0 Journal Article
%A Degtyarev, Alex
%T Plane sextics via dessins d’enfants
%J Geometry & topology
%D 2010
%P 393-433
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.393/
%R 10.2140/gt.2010.14.393
%F GT_2010_14_1_a7
Degtyarev, Alex. Plane sextics via dessins d’enfants. Geometry & topology, Tome 14 (2010) no. 1, pp. 393-433. doi : 10.2140/gt.2010.14.393. http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.393/

[1] E Artal Bartolo, J Carmona Ruber, J I Cogolludo Agustín, Braid monodromy and topology of plane curves, Duke Math. J. 118 (2003) 261

[2] A Degtyarev, Isotopic classification of complex plane projective curves of degree $5$, Algebra i Analiz 1 (1989) 78

[3] A Degtyarev, Quintics in $\mathbf{C}\mathrm{P}^2$ with nonabelian fundamental group, Algebra i Analiz 11 (1999) 130

[4] A Degtyarev, Fundamental groups of symmetric sextics, J. Math. Kyoto Univ. 48 (2008) 765

[5] A Degtyarev, Oka's conjecture on irreducible plane sextics, J. Lond. Math. Soc. $(2)$ 78 (2008) 329

[6] A Degtyarev, On deformations of singular plane sextics, J. Algebraic Geom. 17 (2008) 101

[7] A Degtyarev, Stable symmetries of plane sextics, Geom. Dedicata 137 (2008) 199

[8] A Degtyarev, Fundamental groups of symmetric sextics. II, Proc. London Math. Soc. (3) 99 (2009) 353

[9] A Degtyarev, Irreducible plane sextics with large fundamental groups, J. Math. Soc. Japan 61 (2009) 1131

[10] A Degtyarev, Zariski $k$–plets via dessins d'enfants, Comment. Math. Helv. 84 (2009) 639

[11] A Degtyarev, I Itenberg, V Kharlamov, On deformation types of real elliptic surfaces, Amer. J. Math. 130 (2008) 1561

[12] A Degtyarev, M Oka, A plane sextic with finite fundamental group, from: "Proc. of Niigata–Toyama Conferences 2007", to appear in Adv. Stud. Pure Math., Math. Soc. Japan

[13] C Eyral, M Oka, On the fundamental groups of the complements of plane singular sextics, J. Math. Soc. Japan 57 (2005) 37

[14] C Eyral, M Oka, Alexander-equivalent Zariski pairs of irreducible sextics

[15] C Eyral, M Oka, On the geometry of certain irreducible non-torus plane sextics, to appear in Kodai Math. J.

[16] C Eyral, M Oka, A proof of a conjecture of Degtyarev on non-torus plane sextics, from: "Proc. of Niigata–Toyama Conferences 2007", to appear in Adv. Stud. Pure Math., Math. Soc. Japan

[17] T Fujita, On the topology of noncomplete algebraic surfaces, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 29 (1982) 503

[18] Gap Group, \ttGAP – Groups, Algorithms, and Programming, Version 4.4.10 (2007)

[19] H Ishida, H Tokunaga, Triple covers of algebraic surfaces and a generalization of Zariski's example, from: "Proc. of Niigata–Toyama Conferences 2007", to appear in Adv. Stud. Pure Math., Math. Soc. Japan

[20] E R Van Kampen, On the fundamental group of an algebraic curve, Amer. J. Math. 55 (1933) 255

[21] E Looijenga, The complement of the bifurcation variety of a simple singularity, Invent. Math. 23 (1974) 105

[22] S Y Orevkov, Riemann existence theorem and construction of real algebraic curves, Ann. Fac. Sci. Toulouse Math. $(6)$ 12 (2003) 517

[23] A Özgüner, Classical Zariski pairs with nodes, dissertation, Bilkent University (2007)

[24] U Persson, Double sextics and singular $K3$ surfaces, from: "Algebraic geometry, Sitges (Barcelona), 1983" (editors E Casas-Alvero, G E Welters, S Xambó-Descamps), Lecture Notes in Math. 1124, Springer (1985) 262

[25] I Shimada, Lattice Zariski pairs of plane sextic curves and splitting curves for double plane sextics, to appear in Michigan Math. J.

[26] I Shimada, On the connected components of the moduli of polarized $K3$ surfaces, Preprint

[27] J G Yang, Sextic curves with simple singularities, Tohoku Math. J. $(2)$ 48 (1996) 203

Cité par Sources :