Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
This is the fourth of five papers that construct an isomorphism between the embedded contact homology and Seiberg–Witten Floer cohomology of a compact –manifold with a given contact –form.
Taubes, Clifford Henry 1
@article{GT_2010_14_5_a3, author = {Taubes, Clifford Henry}, title = {Embedded contact homology and {Seiberg{\textendash}Witten} {Floer} cohomology {IV}}, journal = {Geometry & topology}, pages = {2819--2960}, publisher = {mathdoc}, volume = {14}, number = {5}, year = {2010}, doi = {10.2140/gt.2010.14.2819}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.2819/} }
TY - JOUR AU - Taubes, Clifford Henry TI - Embedded contact homology and Seiberg–Witten Floer cohomology IV JO - Geometry & topology PY - 2010 SP - 2819 EP - 2960 VL - 14 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.2819/ DO - 10.2140/gt.2010.14.2819 ID - GT_2010_14_5_a3 ER -
Taubes, Clifford Henry. Embedded contact homology and Seiberg–Witten Floer cohomology IV. Geometry & topology, Tome 14 (2010) no. 5, pp. 2819-2960. doi : 10.2140/gt.2010.14.2819. http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.2819/
[1] Compactness results in symplectic field theory, Geom. Topol. 7 (2003) 799
, , , , ,[2] An index inequality for embedded pseudoholomorphic curves in symplectizations, J. Eur. Math. Soc. $($JEMS$)$ 4 (2002) 313
,[3] The embedded contact homology index revisited, from: "New perspectives and challenges in symplectic field theory" (editors M Abreu, F Lalonde, L Polterovich), CRM Proc. Lecture Notes 49, Amer. Math. Soc. (2009) 263
,[4] Rounding corners of polygons and the embedded contact homology of $T^3$, Geom. Topol. 10 (2006) 169
, ,[5] Monopoles and three-manifolds, New Math. Monogr. 10, Cambridge Univ. Press (2007)
, ,[6] Seiberg–Witten and Gromov invariants for symplectic $4$–manifolds, \rm(R Wentworth, editor), First Int. Press Lecture Ser. 2, International Press (2000)
,[7] The Seiberg–Witten equations and the Weinstein conjecture, Geom. Topol. 11 (2007) 2117
,[8] Embedded contact homology and Seiberg–Witten Floer cohomology I, Geom. Topol. 14 (2010) 2497
,[9] Embedded contact homology and Seiberg–Witten Floer cohomology II, Geom. Topol. 14 (2010) 2583
,[10] Embedded contact homology and Seiberg–Witten Floer cohomology III, Geom. Topol. 14 (2010) 2721
,Cité par Sources :