Embedded contact homology and Seiberg–Witten Floer cohomology IV
Geometry & topology, Tome 14 (2010) no. 5, pp. 2819-2960.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

This is the fourth of five papers that construct an isomorphism between the embedded contact homology and Seiberg–Witten Floer cohomology of a compact 3–manifold with a given contact 1–form.

DOI : 10.2140/gt.2010.14.2819
Keywords: Seiberg–Witten equations, Floer homology, contact homology

Taubes, Clifford Henry 1

1 Department of Mathematics, Harvard University, Cambridge, MA 02138, USA
@article{GT_2010_14_5_a3,
     author = {Taubes, Clifford Henry},
     title = {Embedded contact homology and {Seiberg{\textendash}Witten} {Floer} cohomology {IV}},
     journal = {Geometry & topology},
     pages = {2819--2960},
     publisher = {mathdoc},
     volume = {14},
     number = {5},
     year = {2010},
     doi = {10.2140/gt.2010.14.2819},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.2819/}
}
TY  - JOUR
AU  - Taubes, Clifford Henry
TI  - Embedded contact homology and Seiberg–Witten Floer cohomology IV
JO  - Geometry & topology
PY  - 2010
SP  - 2819
EP  - 2960
VL  - 14
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.2819/
DO  - 10.2140/gt.2010.14.2819
ID  - GT_2010_14_5_a3
ER  - 
%0 Journal Article
%A Taubes, Clifford Henry
%T Embedded contact homology and Seiberg–Witten Floer cohomology IV
%J Geometry & topology
%D 2010
%P 2819-2960
%V 14
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.2819/
%R 10.2140/gt.2010.14.2819
%F GT_2010_14_5_a3
Taubes, Clifford Henry. Embedded contact homology and Seiberg–Witten Floer cohomology IV. Geometry & topology, Tome 14 (2010) no. 5, pp. 2819-2960. doi : 10.2140/gt.2010.14.2819. http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.2819/

[1] F Bourgeois, Y Eliashberg, H Hofer, K Wysocki, E Zehnder, Compactness results in symplectic field theory, Geom. Topol. 7 (2003) 799

[2] M Hutchings, An index inequality for embedded pseudoholomorphic curves in symplectizations, J. Eur. Math. Soc. $($JEMS$)$ 4 (2002) 313

[3] M Hutchings, The embedded contact homology index revisited, from: "New perspectives and challenges in symplectic field theory" (editors M Abreu, F Lalonde, L Polterovich), CRM Proc. Lecture Notes 49, Amer. Math. Soc. (2009) 263

[4] M Hutchings, M Sullivan, Rounding corners of polygons and the embedded contact homology of $T^3$, Geom. Topol. 10 (2006) 169

[5] P Kronheimer, T Mrowka, Monopoles and three-manifolds, New Math. Monogr. 10, Cambridge Univ. Press (2007)

[6] C H Taubes, Seiberg–Witten and Gromov invariants for symplectic $4$–manifolds, \rm(R Wentworth, editor), First Int. Press Lecture Ser. 2, International Press (2000)

[7] C H Taubes, The Seiberg–Witten equations and the Weinstein conjecture, Geom. Topol. 11 (2007) 2117

[8] C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology I, Geom. Topol. 14 (2010) 2497

[9] C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology II, Geom. Topol. 14 (2010) 2583

[10] C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology III, Geom. Topol. 14 (2010) 2721

Cité par Sources :