Prescribing the behaviour of geodesics in negative curvature
Geometry & topology, Tome 14 (2010) no. 1, pp. 277-392.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Given a family of (almost) disjoint strictly convex subsets of a complete negatively curved Riemannian manifold M, such as balls, horoballs, tubular neighbourhoods of totally geodesic submanifolds, etc, the aim of this paper is to construct geodesic rays or lines in M which have exactly once an exactly prescribed (big enough) penetration in one of them, and otherwise avoid (or do not enter too much into) them. Several applications are given, including a definite improvement of the unclouding problem of our paper [Geom. Func. Anal. 15 (2005) 491–533], the prescription of heights of geodesic lines in a finite volume such M, or of spiraling times around a closed geodesic in a closed such M. We also prove that the Hall ray phenomenon described by Hall in special arithmetic situations and by Schmidt–Sheingorn for hyperbolic surfaces is in fact only a negative curvature property.

DOI : 10.2140/gt.2010.14.277
Keywords: geodesics, negative curvature, horoballs, Lagrange spectrum, Hall ray

Parkkonen, Jouni 1 ; Paulin, Frédéric 2

1 Department of Mathematics and Statistics, PO Box 35, 40014 University of Jyväskylä, Finland
2 Département de Mathématique et Applications, UMR 8553 CNRS, Ecole Normale Supérieure, 45 rue d’Ulm, 75230 PARIS Cedex 05, France
@article{GT_2010_14_1_a6,
     author = {Parkkonen, Jouni and Paulin, Fr\'ed\'eric},
     title = {Prescribing the behaviour of geodesics in negative curvature},
     journal = {Geometry & topology},
     pages = {277--392},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2010},
     doi = {10.2140/gt.2010.14.277},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.277/}
}
TY  - JOUR
AU  - Parkkonen, Jouni
AU  - Paulin, Frédéric
TI  - Prescribing the behaviour of geodesics in negative curvature
JO  - Geometry & topology
PY  - 2010
SP  - 277
EP  - 392
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.277/
DO  - 10.2140/gt.2010.14.277
ID  - GT_2010_14_1_a6
ER  - 
%0 Journal Article
%A Parkkonen, Jouni
%A Paulin, Frédéric
%T Prescribing the behaviour of geodesics in negative curvature
%J Geometry & topology
%D 2010
%P 277-392
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.277/
%R 10.2140/gt.2010.14.277
%F GT_2010_14_1_a6
Parkkonen, Jouni; Paulin, Frédéric. Prescribing the behaviour of geodesics in negative curvature. Geometry & topology, Tome 14 (2010) no. 1, pp. 277-392. doi : 10.2140/gt.2010.14.277. http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.277/

[1] W Abikoff, B Maskit, Geometric decompositions of Kleinian groups, Amer. J. Math. 99 (1977) 687

[2] L V Ahlfors, Möbius transformations and Clifford numbers, from: "Differential geometry and complex analysis" (editors I Chavel, H M Farkas), Springer (1985) 65

[3] C S Aravinda, E Leuzinger, Bounded geodesics in rank-$1$ locally symmetric spaces, Ergodic Theory Dynam. Systems 15 (1995) 813

[4] H Aslaksen, Quaternionic determinants, Math. Intelligencer 18 (1996) 57

[5] A F Beardon, The geometry of discrete groups, Graduate Texts in Math. 91, Springer (1983)

[6] A Borel, Linear algebraic groups, from: "Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965)", Amer. Math. Soc. (1966) 3

[7] A Borel, Reduction theory for arithmetic groups, from: "Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965)", Amer. Math. Soc. (1966) 20

[8] A Borel, Harish-Chandra, Arithmetic subgroups of algebraic groups, Ann. of Math. $(2)$ 75 (1962) 485

[9] M Bourdon, Sur le birapport au bord des $\mathrm{CAT}(-1)$–espaces, Inst. Hautes Études Sci. Publ. Math. 83 (1996) 95

[10] B H Bowditch, Geometrical finiteness with variable negative curvature, Duke Math. J. 77 (1995) 229

[11] M R Bridson, A Haefliger, Metric spaces of non-positive curvature, Grund. der Math. Wissenschaften 319, Springer (1999)

[12] P Buser, H Karcher, Gromov's almost flat manifolds, Astérisque 81, Société Mathématique de France (1981) 148

[13] S Buyalo, V Schroeder, M Walz, Geodesics avoiding open subsets in surfaces of negative curvature, Ergodic Theory Dynam. Systems 20 (2000) 991

[14] D A Cox, Primes of the form $x^2 + ny^2$, Fermat, class field theory and complex multiplication, Wiley-Interscience, John Wiley Sons (1989)

[15] T W Cusick, M E Flahive, The Markoff and Lagrange spectra, Math. Surveys and Monogr. 30, Amer. Math. Soc. (1989)

[16] S G Dani, Bounded orbits of flows on homogeneous spaces, Comment. Math. Helv. 61 (1986) 636

[17] J Dieudonné, Les déterminants sur un corps non commutatif, Bull. Soc. Math. France 71 (1943) 27

[18] J Elstrodt, F Grunewald, J Mennicke, Groups acting on hyperbolic space. Harmonic analysis and number theory, Springer Monogr. in Math., Springer (1998)

[19] J M Feustel, Über die Spitzen von Modulflächen zur zweidimensionalen komplexen Einheitskugel, Preprint Series 13 Akad. Wiss. DDR, ZIMM, Berlin 14 (1977)

[20] L R Ford, Rational approximations to irrational complex numbers, Trans. Amer. Math. Soc. 19 (1918) 1

[21] G A Freiman, Diophantine approximations and the geometry of numbers (Markov's problem), Kalinin. Gosudarstv. Univ., Kalinin (1975) 144

[22] É Ghys, P De La Harpe, Editors, Sur les groupes hyperboliques d'après Mikhael Gromov, Progress in Math. 83, Birkhäuser (1990)

[23] W M Goldman, Complex hyperbolic geometry, Oxford Math. Monogr., Oxford Univ. Press (1999)

[24] M Hall Jr., On the sum and product of continued fractions, Ann. of Math. $(2)$ 48 (1947) 966

[25] M Hall Jr., The Markoff spectrum, Acta Arith. 18 (1971) 387

[26] U Hamenstädt, A new description of the Bowen–Margulis measure, Ergodic Theory Dynam. Systems 9 (1989) 455

[27] Y Hellegouarch, Quaternionic homographies: application to Ford hyperspheres, C. R. Math. Rep. Acad. Sci. Canada 11 (1989) 171

[28] S Hersonsky, F Paulin, On the volumes of complex hyperbolic manifolds, Duke Math. J. 84 (1996) 719

[29] S Hersonsky, F Paulin, On the rigidity of discrete isometry groups of negatively curved spaces, Comment. Math. Helv. 72 (1997) 349

[30] S Hersonsky, F Paulin, Diophantine approximation for negatively curved manifolds, Math. Z. 241 (2002) 181

[31] S Hersonsky, F Paulin, Diophantine approximation in negatively curved manifolds and in the Heisenberg group, from: "Rigidity in dynamics and geometry (Cambridge, 2000)" (editors M Burger, A Iozzi), Springer (2002) 203

[32] S Hersonsky, F Paulin, Counting orbit points in coverings of negatively curved manifolds and Hausdorff dimension of cusp excursions, Ergodic Theory Dynam. Systems 24 (2004) 803

[33] S Hersonsky, F Paulin, On the almost sure spiraling of geodesics in negatively curved manifolds, to appear in J. Diff. Geom.

[34] R Hill, S L Velani, The Jarník–Besicovitch theorem for geometrically finite Kleinian groups, Proc. London Math. Soc. $(3)$ 77 (1998) 524

[35] R P Holzapfel, Arithmetische Kugelquotientenflächen I/II, Seminarberichte 14, Humboldt Univ. Sekt. Math. (1978)

[36] R P Holzapfel, Ball and surface arithmetics, Aspects of Math., E29, Friedr. Vieweg Sohn (1998)

[37] S Kamiya, On discrete subgroups of $\mathrm{PU}(1,2;\mathbf{C})$ with Heisenberg translations, J. London Math. Soc. $(2)$ 62 (2000) 827

[38] R Kellerhals, Quaternions and some global properties of hyperbolic $5$–manifolds, Canad. J. Math. 55 (2003) 1080

[39] D Y Kleinbock, G A Margulis, Logarithm laws for flows on homogeneous spaces, Invent. Math. 138 (1999) 451

[40] D Y Kleinbock, B Weiss, Bounded geodesics in moduli space, Int. Math. Res. Not. 30 (2004) 1551

[41] A Korányi, H M Reimann, Quasiconformal mappings on the Heisenberg group, Invent. Math. 80 (1985) 309

[42] C Maclachlan, A W Reid, The arithmetic of hyperbolic $3$–manifolds, Graduate Texts in Math. 219, Springer (2003)

[43] C Maclachlan, P L Waterman, N Wielenberg, Higher-dimensional analogues of the modular and Picard groups, Trans. Amer. Math. Soc. 312 (1989) 739

[44] K Matsuzaki, M Taniguchi, Hyperbolic manifolds and Kleinian groups, Oxford Math. Monogr., Oxford Univ. Press (1998)

[45] J P Otal, Sur la géometrie symplectique de l'espace des géodésiques d'une variété à courbure négative, Rev. Mat. Iberoamericana 8 (1992) 441

[46] J R Parker, Shimizu's lemma for complex hyperbolic space, Internat. J. Math. 3 (1992) 291

[47] J Parkkonen, F Paulin, Unclouding the sky of negatively curved manifolds, Geom. Funct. Anal. 15 (2005) 491

[48] J Parkkonen, F Paulin, Sur les rayons de Hall en approximation diophantienne, C. R. Math. Acad. Sci. Paris 344 (2007) 611

[49] J Parkkonen, F Paulin, Spiraling spectra of geodesic lines in negatively curved manifolds, Preprint (2008)

[50] J Parkkonen, F Paulin, On strictly convex subsets in negatively curved manifolds, in preparation

[51] F Paulin, Un groupe hyperbolique est déterminé par son bord, J. London Math. Soc. $(2)$ 54 (1996) 50

[52] G Poitou, Sur l'approximation des nombres complexes par les nombres des corps imaginaires quadratiques dénués d'idéaux non principaux, particulièrement lorsque vaut l'algorithme d'Euclide, Ann. Sci. Ecole Norm. Sup. $(3)$ 70 (1953) 199

[53] A L Schmidt, Farey simplices in the space of quaternions, Math. Scand. 24 (1969) 31

[54] A L Schmidt, On the approximation of quaternions, Math. Scand. 34 (1974) 184

[55] T A Schmidt, M Sheingorn, Riemann surfaces have Hall rays at each cusp, Illinois J. Math. 41 (1997) 378

[56] V Schroeder, Bounded geodesics in manifolds of negative curvature, Math. Z. 235 (2000) 817

[57] C Series, The modular surface and continued fractions, J. London Math. Soc. $(2)$ 31 (1985) 69

[58] N J A Sloane, Editor, The online encyclopedia of integer sequences

[59] B Stratmann, The Hausdorff dimension of bounded geodesics on geometrically finite manifolds, Ergodic Theory Dynam. Systems 17 (1997) 227

[60] D Sullivan, Disjoint spheres, approximation by imaginary quadratic numbers, and the logarithm law for geodesics, Acta Math. 149 (1982) 215

[61] M F Vignéras, Arithmétique des algèbres de quaternions, Lecture Notes in Math. 800, Springer (1980)

[62] R Walter, Some analytical properties of geodesically convex sets, Abh. Math. Sem. Univ. Hamburg 45 (1976) 263

[63] T Zink, Über die Anzahl der Spitzen einiger arithmetischer Untergruppen unitärer Gruppen, Math. Nachr. 89 (1979) 315

Cité par Sources :