Embedded contact homology and Seiberg–Witten Floer cohomology III
Geometry & topology, Tome 14 (2010) no. 5, pp. 2721-2817.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

This is the third of five papers that construct an isomorphism between the embedded contact homology and Seiberg–Witten Floer cohomology of a compact 3–manifold with a given contact 1–form.

DOI : 10.2140/gt.2010.14.2721
Keywords: Seiberg–Witten equations, Floer homology, contact homology

Taubes, Clifford Henry 1

1 Department of Mathematics, Harvard University, Cambridge, MA 02138, USA
@article{GT_2010_14_5_a2,
     author = {Taubes, Clifford Henry},
     title = {Embedded contact homology and {Seiberg{\textendash}Witten} {Floer} cohomology {III}},
     journal = {Geometry & topology},
     pages = {2721--2817},
     publisher = {mathdoc},
     volume = {14},
     number = {5},
     year = {2010},
     doi = {10.2140/gt.2010.14.2721},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.2721/}
}
TY  - JOUR
AU  - Taubes, Clifford Henry
TI  - Embedded contact homology and Seiberg–Witten Floer cohomology III
JO  - Geometry & topology
PY  - 2010
SP  - 2721
EP  - 2817
VL  - 14
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.2721/
DO  - 10.2140/gt.2010.14.2721
ID  - GT_2010_14_5_a2
ER  - 
%0 Journal Article
%A Taubes, Clifford Henry
%T Embedded contact homology and Seiberg–Witten Floer cohomology III
%J Geometry & topology
%D 2010
%P 2721-2817
%V 14
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.2721/
%R 10.2140/gt.2010.14.2721
%F GT_2010_14_5_a2
Taubes, Clifford Henry. Embedded contact homology and Seiberg–Witten Floer cohomology III. Geometry & topology, Tome 14 (2010) no. 5, pp. 2721-2817. doi : 10.2140/gt.2010.14.2721. http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.2721/

[1] J M Bismut, D S Freed, The analysis of elliptic families. I. Metrics and connections on determinant bundles, Comm. Math. Phys. 106 (1986) 159

[2] F Bourgeois, K Mohnke, Coherent orientations in symplectic field theory, Math. Z. 248 (2004) 123

[3] S K Donaldson, P B Kronheimer, The geometry of four-manifolds, Oxford Math. Monogr., Oxford Science Publ., The Clarendon Press, Oxford Univ. Press (1990)

[4] R Gompf, private communication

[5] H Hofer, K Wysocki, E Zehnder, Properties of pseudoholomorphic curves in symplectisations. I. Asymptotics, Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996) 337

[6] M Hutchings, An index inequality for embedded pseudoholomorphic curves in symplectizations, J. Eur. Math. Soc. $($JEMS$)$ 4 (2002) 313

[7] M Hutchings, C H Taubes, Gluing pseudoholomorphic curves along branched covered cylinders. I, J. Symplectic Geom. 5 (2007) 43

[8] M Hutchings, C H Taubes, Gluing pseudoholomorphic curves along branched covered cylinders. II, J. Symplectic Geom. 7 (2009) 29

[9] P Kronheimer, T Mrowka, Monopoles and three-manifolds, New Math. Monogr. 10, Cambridge Univ. Press (2007)

[10] T Mrowka, A local Mayer–Vietoris principle for Yang–Mills moduli spaces, PhD thesis, University of California, Berkeley (1989)

[11] D Quillen, Determinants of Cauchy–Riemann operators on Riemann surfaces, Funktsional. Anal. i Prilozhen. 19 (1985) 37, 96

[12] C H Taubes, Asymptotic spectral flow for Dirac operators, Comm. Anal. Geom. 15 (2007) 569

[13] C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology I, Geom. Topol. 14 (2010) 2497

[14] C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology II, Geom. Topol. 14 (2010) 2583

[15] C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology IV, Geom. Topol. 14 (2010) 2819

Cité par Sources :