Embedded contact homology and Seiberg–Witten Floer cohomology II
Geometry & topology, Tome 14 (2010) no. 5, pp. 2583-2720.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

This is the second of five papers that construct an isomorphism between the embedded contact homology and Seiberg–Witten Floer cohomology of a compact 3–manifold with a given contact 1–form.

DOI : 10.2140/gt.2010.14.2583
Keywords: Seiberg–Witten equations, Floer homology, contact homology

Taubes, Clifford Henry 1

1 Department of Mathematics, Harvard University, Cambridge, MA 02138, USA
@article{GT_2010_14_5_a1,
     author = {Taubes, Clifford Henry},
     title = {Embedded contact homology and {Seiberg{\textendash}Witten} {Floer} cohomology {II}},
     journal = {Geometry & topology},
     pages = {2583--2720},
     publisher = {mathdoc},
     volume = {14},
     number = {5},
     year = {2010},
     doi = {10.2140/gt.2010.14.2583},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.2583/}
}
TY  - JOUR
AU  - Taubes, Clifford Henry
TI  - Embedded contact homology and Seiberg–Witten Floer cohomology II
JO  - Geometry & topology
PY  - 2010
SP  - 2583
EP  - 2720
VL  - 14
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.2583/
DO  - 10.2140/gt.2010.14.2583
ID  - GT_2010_14_5_a1
ER  - 
%0 Journal Article
%A Taubes, Clifford Henry
%T Embedded contact homology and Seiberg–Witten Floer cohomology II
%J Geometry & topology
%D 2010
%P 2583-2720
%V 14
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.2583/
%R 10.2140/gt.2010.14.2583
%F GT_2010_14_5_a1
Taubes, Clifford Henry. Embedded contact homology and Seiberg–Witten Floer cohomology II. Geometry & topology, Tome 14 (2010) no. 5, pp. 2583-2720. doi : 10.2140/gt.2010.14.2583. http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.2583/

[1] A Jaffe, C Taubes, Vortices and monopoles. Structure of static gauge theories, Progress in Physics 2, Birkhäuser (1980)

[2] P Kronheimer, T Mrowka, Monopoles and three-manifolds, New Math. Monogr. 10, Cambridge Univ. Press (2007)

[3] C B Morrey Jr., Multiple integrals in the calculus of variations, Grund. der math. Wissenschaften 130, Springer (1966)

[4] C H Taubes, Arbitrary $N$–vortex solutions to the first order Ginzburg–Landau equations, Comm. Math. Phys. 72 (1980) 277

[5] C H Taubes, Seiberg–Witten and Gromov invariants for symplectic $4$–manifolds, \rm(R Wentworth, editor), First Int. Press Lecture Ser. 2, Int. Press (2000)

[6] C H Taubes, The Seiberg–Witten equations and the Weinstein conjecture, Geom. Topol. 11 (2007) 2117

[7] C H Taubes, The Seiberg-Witten equations and the Weinstein conjecture. II. More closed integral curves of the Reeb vector field, Geom. Topol. 13 (2009) 1337

[8] C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology I, Geom. Topol. 14 (2010) 2497

[9] C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology III, Geom. Topol. 14 (2010) 2721

[10] C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology IV, Geom. Topol. 14 (2010) 2819

Cité par Sources :