Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
This is the second of five papers that construct an isomorphism between the embedded contact homology and Seiberg–Witten Floer cohomology of a compact –manifold with a given contact –form.
Taubes, Clifford Henry 1
@article{GT_2010_14_5_a1, author = {Taubes, Clifford Henry}, title = {Embedded contact homology and {Seiberg{\textendash}Witten} {Floer} cohomology {II}}, journal = {Geometry & topology}, pages = {2583--2720}, publisher = {mathdoc}, volume = {14}, number = {5}, year = {2010}, doi = {10.2140/gt.2010.14.2583}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.2583/} }
TY - JOUR AU - Taubes, Clifford Henry TI - Embedded contact homology and Seiberg–Witten Floer cohomology II JO - Geometry & topology PY - 2010 SP - 2583 EP - 2720 VL - 14 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.2583/ DO - 10.2140/gt.2010.14.2583 ID - GT_2010_14_5_a1 ER -
Taubes, Clifford Henry. Embedded contact homology and Seiberg–Witten Floer cohomology II. Geometry & topology, Tome 14 (2010) no. 5, pp. 2583-2720. doi : 10.2140/gt.2010.14.2583. http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.2583/
[1] Vortices and monopoles. Structure of static gauge theories, Progress in Physics 2, Birkhäuser (1980)
, ,[2] Monopoles and three-manifolds, New Math. Monogr. 10, Cambridge Univ. Press (2007)
, ,[3] Multiple integrals in the calculus of variations, Grund. der math. Wissenschaften 130, Springer (1966)
,[4] Arbitrary $N$–vortex solutions to the first order Ginzburg–Landau equations, Comm. Math. Phys. 72 (1980) 277
,[5] Seiberg–Witten and Gromov invariants for symplectic $4$–manifolds, \rm(R Wentworth, editor), First Int. Press Lecture Ser. 2, Int. Press (2000)
,[6] The Seiberg–Witten equations and the Weinstein conjecture, Geom. Topol. 11 (2007) 2117
,[7] The Seiberg-Witten equations and the Weinstein conjecture. II. More closed integral curves of the Reeb vector field, Geom. Topol. 13 (2009) 1337
,[8] Embedded contact homology and Seiberg–Witten Floer cohomology I, Geom. Topol. 14 (2010) 2497
,[9] Embedded contact homology and Seiberg–Witten Floer cohomology III, Geom. Topol. 14 (2010) 2721
,[10] Embedded contact homology and Seiberg–Witten Floer cohomology IV, Geom. Topol. 14 (2010) 2819
,Cité par Sources :