Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
This is the first of five papers that construct an isomorphism between the embedded contact homology and Seiberg–Witten Floer cohomology of a compact –manifold with a given contact –form. This paper describes what is involved in the construction.
Taubes, Clifford Henry 1
@article{GT_2010_14_5_a0, author = {Taubes, Clifford Henry}, title = {Embedded contact homology and {Seiberg{\textendash}Witten} {Floer} cohomology {I}}, journal = {Geometry & topology}, pages = {2497--2581}, publisher = {mathdoc}, volume = {14}, number = {5}, year = {2010}, doi = {10.2140/gt.2010.14.2497}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.2497/} }
TY - JOUR AU - Taubes, Clifford Henry TI - Embedded contact homology and Seiberg–Witten Floer cohomology I JO - Geometry & topology PY - 2010 SP - 2497 EP - 2581 VL - 14 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.2497/ DO - 10.2140/gt.2010.14.2497 ID - GT_2010_14_5_a0 ER -
Taubes, Clifford Henry. Embedded contact homology and Seiberg–Witten Floer cohomology I. Geometry & topology, Tome 14 (2010) no. 5, pp. 2497-2581. doi : 10.2140/gt.2010.14.2497. http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.2497/
[1] Coherent orientations in symplectic field theory, Math. Z. 248 (2004) 123
, ,[2] Morse theory for fixed points of symplectic diffeomorphisms, Bull. Amer. Math. Soc. $($N.S.$)$ 16 (1987) 279
,[3] Morse theory for Lagrangian intersections, J. Differential Geom. 28 (1988) 513
,[4] Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three, Invent. Math. 114 (1993) 515
,[5] Dynamics, topology, and holomorphic curves, from: "Proceedings of the International Congress of Mathematicians, Vol. I (Berlin, 1998)" (1998) 255
,[6] Holomorphic curves and dynamics in dimension three, from: "Symplectic geometry and topology (Park City, UT, 1997)" (editors Eliashberg,Yakov, L Traynor), IAS/Park City Math. Ser. 7, Amer. Math. Soc. (1999) 35
,[7] Holomorphic curves and real three-dimensional dynamics, Geom. Funct. Anal. (2000) 674
,[8] Properties of pseudo-holomorphic curves in symplectisations. II. Embedding controls and algebraic invariants, Geom. Funct. Anal. 5 (1995) 270
, , ,[9] Properties of pseudoholomorphic curves in symplectisations. I. Asymptotics, Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996) 337
, , ,[10] Properties of pseudoholomorphic curves in symplectizations. III. Fredholm theory, from: "Topics in nonlinear analysis" (editors J Escher, G Simonett), Progr. Nonlinear Differential Equations Appl. 35, Birkhäuser (1999) 381
, , ,[11] An index inequality for embedded pseudoholomorphic curves in symplectizations, J. Eur. Math. Soc. $($JEMS$)$ 4 (2002) 313
,[12] Rounding corners of polygons and the embedded contact homology of $T^3$, Geom. Topol. 10 (2006) 169
, ,[13] Gluing pseudoholomorphic curves along branched covered cylinders. I, J. Symplectic Geom. 5 (2007) 43
, ,[14] Gluing pseudoholomorphic curves along branched covered cylinders. II, J. Symplectic Geom. 7 (2009) 29
, ,[15] Vortices and monopoles. Structure of static gauge theories, Progress in Physics 2, Birkhäuser (1980)
, ,[16] Monopoles and three-manifolds, New Math. Monogr. 10, Cambridge Univ. Press (2007)
, ,[17] Multiple integrals in the calculus of variations, Grund. der math. Wissenschaften 130, Springer (1966)
,[18] Determinants of Cauchy–Riemann operators on Riemann surfaces, Funktsional. Anal. i Prilozhen. 19 (1985) 37, 96
,[19] Relative asymptotic behavior of pseudoholomorphic half-cylinders, Comm. Pure Appl. Math. 61 (2008) 1631
,[20] Arbitrary $N$–vortex solutions to the first order Ginzburg–Landau equations, Comm. Math. Phys. 72 (1980) 277
,[21] The Seiberg–Witten and Gromov invariants, Math. Res. Lett. 2 (1995) 221
,[22] Seiberg–Witten and Gromov invariants for symplectic $4$–manifolds, \rm(R Wentworth, editor), First Int. Press Lecture Ser. 2, Int. Press (2000)
,[23] Asymptotic spectral flow for Dirac operators, Comm. Anal. Geom. 15 (2007) 569
,[24] The Seiberg–Witten equations and the Weinstein conjecture, Geom. Topol. 11 (2007) 2117
,[25] The Seiberg–Witten equations and the Weinstein conjecture. II. More closed integral curves of the Reeb vector field, Geom. Topol. 13 (2009) 1337
,[26] Embedded contact homology and Seiberg–Witten Floer cohomology II, Geom. Topol. 14 (2010) 2583
,[27] Embedded contact homology and Seiberg–Witten Floer cohomology III, Geom. Topol. 14 (2010) 2721
,[28] Embedded contact homology and Seiberg–Witten Floer cohomology IV, Geom. Topol. 14 (2010) 2819
,[29] Embedded contact homology and Seiberg–Witten Floer cohomology V, Geom. Topol. 14 (2010) 2961
,Cité par Sources :