Algebraic and geometric convergence of discrete representations into PSL2ℂ
Geometry & topology, Tome 14 (2010) no. 4, pp. 2431-2477.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Anderson and Canary have shown that if the algebraic limit of a sequence of discrete, faithful representations of a finitely generated group into PSL2 does not contain parabolics, then it is also the sequence’s geometric limit. We construct examples that demonstrate the failure of this theorem for certain sequences of unfaithful representations, and offer a suitable replacement.

DOI : 10.2140/gt.2010.14.2431
Keywords: hyperbolic manifold, algebraic convergence, geometric convergence

Biringer, Ian 1 ; Souto, Juan 2

1 Department of Mathematics, Yale University, New Haven CT 06511, USA
2 Department of Mathematics, University of Michigan, Ann Arbor MI 48109, USA
@article{GT_2010_14_4_a16,
     author = {Biringer, Ian and Souto, Juan},
     title = {Algebraic and geometric convergence of discrete representations into {PSL2\ensuremath{\mathbb{C}}}},
     journal = {Geometry & topology},
     pages = {2431--2477},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2010},
     doi = {10.2140/gt.2010.14.2431},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.2431/}
}
TY  - JOUR
AU  - Biringer, Ian
AU  - Souto, Juan
TI  - Algebraic and geometric convergence of discrete representations into PSL2ℂ
JO  - Geometry & topology
PY  - 2010
SP  - 2431
EP  - 2477
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.2431/
DO  - 10.2140/gt.2010.14.2431
ID  - GT_2010_14_4_a16
ER  - 
%0 Journal Article
%A Biringer, Ian
%A Souto, Juan
%T Algebraic and geometric convergence of discrete representations into PSL2ℂ
%J Geometry & topology
%D 2010
%P 2431-2477
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.2431/
%R 10.2140/gt.2010.14.2431
%F GT_2010_14_4_a16
Biringer, Ian; Souto, Juan. Algebraic and geometric convergence of discrete representations into PSL2ℂ. Geometry & topology, Tome 14 (2010) no. 4, pp. 2431-2477. doi : 10.2140/gt.2010.14.2431. http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.2431/

[1] I Agol, Tameness of hyperbolic 3–manifolds

[2] J W Anderson, R D Canary, Algebraic limits of Kleinian groups which rearrange the pages of a book, Invent. Math. 126 (1996) 205 | DOI

[3] J W Anderson, R D Canary, Cores of hyperbolic 3–manifolds and limits of Kleinian groups, Amer. J. Math. 118 (1996) 745

[4] J W Anderson, R D Canary, Cores of hyperbolic 3–manifolds and limits of Kleinian groups. II, J. London Math. Soc. 61 (2000) 489 | DOI

[5] J W Anderson, R D Canary, M Culler, P B Shalen, Free Kleinian groups and volumes of hyperbolic 3–manifolds, J. Differential Geom. 43 (1996) 738

[6] R Benedetti, C Petronio, Lectures on hyperbolic geometry, , Springer (1992)

[7] M Bestvina, Degenerations of the hyperbolic space, Duke Math. J. 56 (1988) 143 | DOI

[8] F Bonahon, Bouts des variétés hyperboliques de dimension 3, Ann. of Math. 124 (1986) 71 | DOI

[9] F Bonahon, J P Otal, Variétés hyperboliques à géodésiques arbitrairement courtes, Bull. London Math. Soc. 20 (1988) 255 | DOI

[10] J F Brock, Continuity of Thurston’s length function, Geom. Funct. Anal. 10 (2000) 741 | DOI

[11] J F Brock, Iteration of mapping classes and limits of hyperbolic 3–manifolds, Invent. Math. 143 (2001) 523 | DOI

[12] J F Brock, K W Bromberg, On the density of geometrically finite Kleinian groups, Acta Math. 192 (2004) 33 | DOI

[13] J F Brock, R D Canary, Y N Minsky, The classification of Kleinian surface groups II : the ending lamination conjecture, to appear in Ann. of Math.

[14] J F Brock, J Souto, Algebraic limits of geometrically finite manifolds are tame, Geom. Funct. Anal. 16 (2006) 1 | DOI

[15] D Calegari, D Gabai, Shrinkwrapping and the taming of hyperbolic 3–manifolds, J. Amer. Math. Soc. 19 (2006) 385 | DOI

[16] R D Canary, The Poincaré metric and a conformal version of a theorem of Thurston, Duke Math. J. 64 (1991) 349 | DOI

[17] R D Canary, Ends of hyperbolic 3–manifolds, J. Amer. Math. Soc. 6 (1993) 1 | DOI

[18] R D Canary, A covering theorem for hyperbolic 3–manifolds and its applications, Topology 35 (1996) 751 | DOI

[19] T D Comar, Hyperbolic Dehn surgery and convergence of Kleinian groups, PhD thesis, University of Michigan (1996)

[20] R Evans, Weakly type-preserving sequences and strong convergence, Geom. Dedicata 108 (2004) 71 | DOI

[21] W Jaco, Lectures on three-manifold topology, 43, Amer. Math. Soc. (1980)

[22] T Jørgensen, On cyclic groups of Möbius transformations, Math. Scand. 33 (1973)

[23] T Jørgensen, On discrete groups of Möbius transformations, Amer. J. Math. 98 (1976) 739

[24] M Kapovich, Hyperbolic manifolds and discrete groups, 183, Birkhäuser (2001)

[25] S P Kerckhoff, W P Thurston, Noncontinuity of the action of the modular group at Bers’ boundary of Teichmüller space, Invent. Math. 100 (1990) 25 | DOI

[26] G Kleineidam, J Souto, Algebraic convergence of function groups, Comment. Math. Helv. 77 (2002) 244 | DOI

[27] A Marden, The geometry of finitely generated kleinian groups, Ann. of Math. 99 (1974) 383

[28] K Matsuzaki, M Taniguchi, Hyperbolic manifolds and Kleinian groups, , Oxford Science Publ., The Clarendon Press, Oxford Univ. Press (1998)

[29] C T Mcmullen, Cusps are dense, Ann. of Math. 133 (1991) 217 | DOI

[30] C T Mcmullen, Renormalization and 3–manifolds which fiber over the circle, 142, Princeton Univ. Press (1996)

[31] C T Mcmullen, Hausdorff dimension and conformal dynamics. I. Strong convergence of Kleinian groups, J. Differential Geom. 51 (1999) 471

[32] Y Minsky, The classification of Kleinian surface groups. I. Models and bounds, Ann. of Math. 171 (2010) 1 | DOI

[33] J W Morgan, P B Shalen, Valuations, trees, and degenerations of hyperbolic structures. I, Ann. of Math. 120 (1984) 401 | DOI

[34] H Namazi, J Souto, Heegaard splittings and pseudo-Anosov maps, Geom. Funct. Anal. 19 (2009) 1195 | DOI

[35] J P Otal, Le théorème d’hyperbolisation pour les variétés fibrées de dimension 3, 235, Soc. Math. France (1996)

[36] J P Otal, Thurston’s hyperbolization of Haken manifolds, from: "Surveys in differential geometry, Vol. III (Cambridge, MA, 1996)" (editors C C Hsiung, S T Yau), Int. Press (1998) 77

[37] F Paulin, Topologie de Gromov équivariante, structures hyperboliques et arbres réels, Invent. Math. 94 (1988) 53 | DOI

[38] W P Thurston, Hyperbolic structures on 3–manifolds II : Surface groups and 3–manifolds which fiber over the circle

[39] W P Thurston, Hyperbolic structures on 3–manifolds. I. Deformation of acylindrical manifolds, Ann. of Math. 124 (1986) 203 | DOI

Cité par Sources :