Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Cohen, Moore, and Neisendorfer’s work on the odd primary homotopy theory of spheres and Moore spaces, as well as the first author’s work on the secondary suspension, predicted the existence of a –local fibration whose connecting map is degree . In a long and complex monograph, Anick constructed such a fibration for and . Using new methods we give a much more conceptual construction which is also valid for and . We go on to establish an space structure on and use this to construct a secondary sequence for the Moore space spectrum.
Gray, Brayton 1 ; Theriault, Stephen 2
@article{GT_2010_14_1_a5, author = {Gray, Brayton and Theriault, Stephen}, title = {An elementary construction of {Anick{\textquoteright}s} fibration}, journal = {Geometry & topology}, pages = {243--275}, publisher = {mathdoc}, volume = {14}, number = {1}, year = {2010}, doi = {10.2140/gt.2010.14.243}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.243/} }
TY - JOUR AU - Gray, Brayton AU - Theriault, Stephen TI - An elementary construction of Anick’s fibration JO - Geometry & topology PY - 2010 SP - 243 EP - 275 VL - 14 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.243/ DO - 10.2140/gt.2010.14.243 ID - GT_2010_14_1_a5 ER -
Gray, Brayton; Theriault, Stephen. An elementary construction of Anick’s fibration. Geometry & topology, Tome 14 (2010) no. 1, pp. 243-275. doi : 10.2140/gt.2010.14.243. http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.243/
[1] Differential algebras in topology, Research Notes in Math. 3, A K Peters Ltd. (1993)
,[2] Small $H$ spaces related to Moore spaces, Topology 34 (1995) 859
, ,[3] The unstable decomposition of $\Omega ^{2}\Sigma ^{2}X$ and its applications, Math. Z. 182 (1983) 553
,[4] Decompositions of loop spaces and applications to exponents, from: "Algebraic topology, Aarhus 1978 (Proc. Sympos.)" (editors J L Dupont, I H Madsen), Lecture Notes in Math. 763, Springer (1979) 1
, , ,[5] The double suspension and exponents of the homotopy groups of spheres, Ann. of Math. $(2)$ 110 (1979) 549
, , ,[6] Torsion in homotopy groups, Ann. of Math. $(2)$ 109 (1979) 121
, , ,[7] A note on the Hilton–Milnor theorem, Topology 10 (1971) 199
,[8] On the iterated suspension, Topology 27 (1988) 301
,[9] $\mathit{EHP}$ spectra and periodicity. I. Geometric constructions, Trans. Amer. Math. Soc. 340 (1993) 595
,[10] $\mathit{EHP}$ spectra and periodicity. II. $\Lambda$–algebra models, Trans. Amer. Math. Soc. 340 (1993) 617
,[11] On decompositions in homotopy theory, Trans. Amer. Math. Soc. 358 (2006) 3305
,[12] Reduced product spaces, Ann. of Math. $(2)$ 62 (1955) 170
,[13] On the double suspension homomorphism, Trans. Amer. Math. Soc. 214 (1975) 169
,[14] Pull-backs in homotopy theory, Canad. J. Math. 28 (1976) 225
,[15] $3$–primary exponents, Math. Proc. Cambridge Philos. Soc. 90 (1981) 63
,[16] The exponent of a Moore space, from: "Algebraic topology and algebraic $K$–theory (Princeton, N.J., 1983)" (editor W Browder), Ann. of Math. Stud. 113, Princeton Univ. Press (1987) 35
,[17] Algebraic methods in unstable homotopy theory, New Math. Monogr. 12, Cambridge Univ. Press (2009)
,[18] A reconstruction of Anick's fibration, PhD thesis, University of Toronto (1997)
,[19] Properties of Anick's spaces, Trans. Amer. Math. Soc. 353 (2001) 1009
,[20] The $3$–primary classifying space of the fiber of the double suspension, to appear in Proc. Amer. Math. Soc.
,Cité par Sources :