Action minimizing properties and distances on the group of Hamiltonian diffeomorphisms
Geometry & topology, Tome 14 (2010) no. 4, pp. 2383-2403.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

In this article we prove that for a smooth fiberwise convex Hamiltonian, the asymptotic Hofer distance from the identity gives a strict upper bound to the value at 0 of Mather’s β function, thus providing a negative answer to a question asked by Siburg [Duke Math. J. 92 (1998) 295-319]. However, we show that equality holds if one considers the asymptotic distance defined in Viterbo [Math. Ann. 292 (1992) 685-710].

DOI : 10.2140/gt.2010.14.2383
Classification : 37J05, 37J50, 53D35
Keywords: Aubry–Mather theory, Mather theory, Hofer distance, Viterbo distance, Mather's minimal average action, Mather's beta function, symplectic homogenization, action-minimizing measure

Sorrentino, Alfonso 1 ; Viterbo, Claude 2

1 Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WB, UK
2 Centre de Mathématiques Laurent Schwartz, UMR 7640 du CNRS, École Polytechnique, 91128 Palaiseau, France
@article{GT_2010_14_4_a14,
     author = {Sorrentino, Alfonso and Viterbo, Claude},
     title = {Action minimizing properties and distances on the group of {Hamiltonian} diffeomorphisms},
     journal = {Geometry & topology},
     pages = {2383--2403},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2010},
     doi = {10.2140/gt.2010.14.2383},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.2383/}
}
TY  - JOUR
AU  - Sorrentino, Alfonso
AU  - Viterbo, Claude
TI  - Action minimizing properties and distances on the group of Hamiltonian diffeomorphisms
JO  - Geometry & topology
PY  - 2010
SP  - 2383
EP  - 2403
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.2383/
DO  - 10.2140/gt.2010.14.2383
ID  - GT_2010_14_4_a14
ER  - 
%0 Journal Article
%A Sorrentino, Alfonso
%A Viterbo, Claude
%T Action minimizing properties and distances on the group of Hamiltonian diffeomorphisms
%J Geometry & topology
%D 2010
%P 2383-2403
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.2383/
%R 10.2140/gt.2010.14.2383
%F GT_2010_14_4_a14
Sorrentino, Alfonso; Viterbo, Claude. Action minimizing properties and distances on the group of Hamiltonian diffeomorphisms. Geometry & topology, Tome 14 (2010) no. 4, pp. 2383-2403. doi : 10.2140/gt.2010.14.2383. http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.2383/

[1] A Banyaga, Sur la structure du groupe des difféomorphismes qui préservent une forme symplectique, Comment. Math. Helv. 53 (1978) 174 | DOI

[2] P Bernard, Symplectic aspects of Mather theory, Duke Math. J. 136 (2007) 401

[3] M Bialy, L Polterovich, Invariant tori and symplectic topology, from: "Sinaĭ’s Moscow Seminar on Dynamical Systems" (editors L A Bunimovich, B M Gurevich, Y B Pesin, N (translation)), Amer. Math. Soc. Transl. Ser. 2 171, Amer. Math. Soc. (1996) 23

[4] E Calabi, On the group of automorphisms of a symplectic manifold, from: "Problems in analysis (Lectures at the Sympos. in honor of Salomon Bochner, Princeton Univ., 1969)" (editor R C Gunning), Princeton Univ. Press (1970) 1

[5] G Contreras, R Iturriaga, G P Paternain, M Paternain, Lagrangian graphs, minimizing measures and Mañé’s critical values, Geom. Funct. Anal. 8 (1998) 788 | DOI

[6] X Cui, An example of convex Hamiltonian diffeomorphism where asymptotic distance from identity is strictly greater than the minimal action, J. Differential Equations 246 (2009) 998 | DOI

[7] I Ekeland, H Hofer, Symplectic topology and Hamiltonian dynamics, Math. Z. 200 (1989) 355 | DOI

[8] M Entov, L Polterovich, Quasi-states and symplectic intersections, Comment. Math. Helv. 81 (2006) 75 | DOI

[9] A Fathi, The Weak KAM theorem in Lagrangian dynamics, Preliminary version number 10 (2009)

[10] H Hofer, On the topological properties of symplectic maps, Proc. Roy. Soc. Edinburgh Sect. A 115 (1990) 25

[11] V Humilière, Continuité en topologie symplectique, PhD thesis, École Polytechnique (2008)

[12] V Humilière, On some completions of the space of Hamiltonian maps, Bull. Soc. Math. France 136 (2008) 373

[13] R Iturriaga, H Sánchez-Morgado, A minimax selector for a class of Hamiltonians on cotangent bundles, Internat. J. Math. 11 (2000) 1147 | DOI

[14] J N Mather, Action minimizing invariant measures for positive definite Lagrangian systems, Math. Z. 207 (1991) 169 | DOI

[15] K F Siburg, Action-minimizing measures and the geometry of the Hamiltonian diffeomorphism group, Duke Math. J. 92 (1998) 295 | DOI

[16] J C Sikorav, Rigidité symplectique dans le cotangent de Tn, Duke Math. J. 59 (1989) 759 | DOI

[17] A Cannas Da Silva, Lectures on symplectic geometry, 1764, Springer (2001) | DOI

[18] A Sorrentino, Lecture notes on Mather’s theory for Lagrangian systems

[19] C Viterbo, Symplectic homogenization

[20] C Viterbo, Symplectic topology as the geometry of generating functions, Math. Ann. 292 (1992) 685 | DOI

[21] C Viterbo, Symplectic topology and Hamilton–Jacobi equations, from: "Morse theoretic methods in nonlinear analysis and in symplectic topology" (editors P Biran, O Cornea, F Lalonde), NATO Sci. Ser. II Math. Phys. Chem. 217, Springer (2006) 439 | DOI

Cité par Sources :