Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
In this article we prove that for a smooth fiberwise convex Hamiltonian, the asymptotic Hofer distance from the identity gives a strict upper bound to the value at 0 of Mather’s function, thus providing a negative answer to a question asked by Siburg [Duke Math. J. 92 (1998) 295-319]. However, we show that equality holds if one considers the asymptotic distance defined in Viterbo [Math. Ann. 292 (1992) 685-710].
Sorrentino, Alfonso 1 ; Viterbo, Claude 2
@article{GT_2010_14_4_a14, author = {Sorrentino, Alfonso and Viterbo, Claude}, title = {Action minimizing properties and distances on the group of {Hamiltonian} diffeomorphisms}, journal = {Geometry & topology}, pages = {2383--2403}, publisher = {mathdoc}, volume = {14}, number = {4}, year = {2010}, doi = {10.2140/gt.2010.14.2383}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.2383/} }
TY - JOUR AU - Sorrentino, Alfonso AU - Viterbo, Claude TI - Action minimizing properties and distances on the group of Hamiltonian diffeomorphisms JO - Geometry & topology PY - 2010 SP - 2383 EP - 2403 VL - 14 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.2383/ DO - 10.2140/gt.2010.14.2383 ID - GT_2010_14_4_a14 ER -
%0 Journal Article %A Sorrentino, Alfonso %A Viterbo, Claude %T Action minimizing properties and distances on the group of Hamiltonian diffeomorphisms %J Geometry & topology %D 2010 %P 2383-2403 %V 14 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.2383/ %R 10.2140/gt.2010.14.2383 %F GT_2010_14_4_a14
Sorrentino, Alfonso; Viterbo, Claude. Action minimizing properties and distances on the group of Hamiltonian diffeomorphisms. Geometry & topology, Tome 14 (2010) no. 4, pp. 2383-2403. doi : 10.2140/gt.2010.14.2383. http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.2383/
[1] Sur la structure du groupe des difféomorphismes qui préservent une forme symplectique, Comment. Math. Helv. 53 (1978) 174 | DOI
,[2] Symplectic aspects of Mather theory, Duke Math. J. 136 (2007) 401
,[3] Invariant tori and symplectic topology, from: "Sinaĭ’s Moscow Seminar on Dynamical Systems" (editors L A Bunimovich, B M Gurevich, Y B Pesin, N (translation)), Amer. Math. Soc. Transl. Ser. 2 171, Amer. Math. Soc. (1996) 23
, ,[4] On the group of automorphisms of a symplectic manifold, from: "Problems in analysis (Lectures at the Sympos. in honor of Salomon Bochner, Princeton Univ., 1969)" (editor R C Gunning), Princeton Univ. Press (1970) 1
,[5] Lagrangian graphs, minimizing measures and Mañé’s critical values, Geom. Funct. Anal. 8 (1998) 788 | DOI
, , , ,[6] An example of convex Hamiltonian diffeomorphism where asymptotic distance from identity is strictly greater than the minimal action, J. Differential Equations 246 (2009) 998 | DOI
,[7] Symplectic topology and Hamiltonian dynamics, Math. Z. 200 (1989) 355 | DOI
, ,[8] Quasi-states and symplectic intersections, Comment. Math. Helv. 81 (2006) 75 | DOI
, ,[9] The Weak KAM theorem in Lagrangian dynamics, Preliminary version number 10 (2009)
,[10] On the topological properties of symplectic maps, Proc. Roy. Soc. Edinburgh Sect. A 115 (1990) 25
,[11] Continuité en topologie symplectique, PhD thesis, École Polytechnique (2008)
,[12] On some completions of the space of Hamiltonian maps, Bull. Soc. Math. France 136 (2008) 373
,[13] A minimax selector for a class of Hamiltonians on cotangent bundles, Internat. J. Math. 11 (2000) 1147 | DOI
, ,[14] Action minimizing invariant measures for positive definite Lagrangian systems, Math. Z. 207 (1991) 169 | DOI
,[15] Action-minimizing measures and the geometry of the Hamiltonian diffeomorphism group, Duke Math. J. 92 (1998) 295 | DOI
,[16] Rigidité symplectique dans le cotangent de Tn, Duke Math. J. 59 (1989) 759 | DOI
,[17] Lectures on symplectic geometry, 1764, Springer (2001) | DOI
,[18] Lecture notes on Mather’s theory for Lagrangian systems
,[19] Symplectic homogenization
,[20] Symplectic topology as the geometry of generating functions, Math. Ann. 292 (1992) 685 | DOI
,[21] Symplectic topology and Hamilton–Jacobi equations, from: "Morse theoretic methods in nonlinear analysis and in symplectic topology" (editors P Biran, O Cornea, F Lalonde), NATO Sci. Ser. II Math. Phys. Chem. 217, Springer (2006) 439 | DOI
,Cité par Sources :