Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show that the Adams operation , , in complex –theory lifts to an operation in smooth –theory. If is a –oriented vector bundle with Thom isomorphism , then there is a characteristic class such that in for all . We lift this class to a –valued characteristic class for real vector bundles with geometric –structures.
If is a –oriented proper submersion, then for all we have in , where is the stable –oriented normal bundle of . To a smooth –orientation of we associate a class refining . Our main theorem states that if is compact, then in for all . We apply this result to the –invariant of bundles of framed manifolds and –invariants of flat vector bundles.
Bunke, Ulrich 1
@article{GT_2010_14_4_a13, author = {Bunke, Ulrich}, title = {Adams operations in smooth {K{\textendash}theory}}, journal = {Geometry & topology}, pages = {2349--2381}, publisher = {mathdoc}, volume = {14}, number = {4}, year = {2010}, doi = {10.2140/gt.2010.14.2349}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.2349/} }
Bunke, Ulrich. Adams operations in smooth K–theory. Geometry & topology, Tome 14 (2010) no. 4, pp. 2349-2381. doi : 10.2140/gt.2010.14.2349. http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.2349/
[1] On the groups J(X). II, Topology 3 (1965) 137
,[2] The eta invariant, Pinc bordism, and equivariant Spinc bordism for cyclic 2–groups, Pacific J. Math. 128 (1987) 1
, ,[3] K homology and index theory, from: "Operator algebras and applications, Part I (Kingston, Ont., 1980)" (editor R V Kadison), Proc. Sympos. Pure Math. 38, Amer. Math. Soc. (1982) 117
, ,[4] On the equivalence of geometric and analytic K–homology, Pure Appl. Math. Q. 3 (2007) 1
, , ,[5] Index theory, eta forms, and Deligne cohomology, Mem. Amer. Math. Soc. 198 (2009)
,[6] Smooth K–theory, 328, Soc. Math. France (2009)
, ,[7] Uniqueness of smooth extensions of generalized cohomology theories, J. Topol. 3 (2010) 110 | DOI
, ,[8] Landweber exact formal group laws and smooth cohomology theories, Algebr. Geom. Topol. 9 (2009) 1751 | DOI
, , , ,[9] Differential characters and geometric invariants, from: "Geometry and topology (College Park, Md., 1983/84)" (editors J Alexander, J Harer), Lecture Notes in Math. 1167, Springer (1985) 50 | DOI
, ,[10] Dirac charge quantization and generalized differential cohomology, from: "Surveys in differential geometry" (editor S T Yau), Surv. Differ. Geom. VII, Int. Press (2000) 129
,[11] On Ramond–Ramond fields and K–theory, J. High Energy Phys. (2000) 14 | DOI
, ,[12] A mod k index theorem, Invent. Math. 107 (1992) 283 | DOI
, ,[13] An approach to Z∕k–index theory, Internat. J. Math. 1 (1990) 189 | DOI
,[14] Quadratic functions in geometry, topology, and M–theory, J. Differential Geom. 70 (2005) 329
, ,[15] Homological properties of comodules over MU∗(MU) and BP∗(BP), Amer. J. Math. 98 (1976) 591
,[16] Self-duality, Ramond–Ramond fields and K–theory, J. High Energy Phys. (2000) 32 | DOI
, ,[17] Complex cobordism and stable homotopy groups of spheres, 347, Amer. Math. Soc. (2004) 395
,[18] Axiomatic characterization of ordinary differential cohomology, J. Topol. 1 (2008) 45 | DOI
, ,[19] Structured bundles define differential K–theory. Géométrie différentielle, physique mathématique, mathématiques et société. I, 321, Soc. Math. France (2008) 1
, ,[20] Ramond–Ramond fields, fractional branes and orbifold differential K–theory, Comm. Math. Phys. 294 (2010) 647 | DOI
, ,[21] Universal coefficient sequences for cohomology theories of CW–spectra, Osaka J. Math. 12 (1975) 305
,Cité par Sources :