Adams operations in smooth K–theory
Geometry & topology, Tome 14 (2010) no. 4, pp. 2349-2381.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that the Adams operation Ψk, k {1,0,1,2,}, in complex K–theory lifts to an operation Ψ̂k in smooth K–theory. If V X is a K–oriented vector bundle with Thom isomorphism ThomV , then there is a characteristic class ρk(V ) K[1k]0(X) such that Ψk(ThomV (x)) = ThomV (ρk(V ) Ψk(x)) in K[1k](X) for all x K(X). We lift this class to a K̂0()[1k]–valued characteristic class for real vector bundles with geometric Spinc–structures.

If π: E B is a K–oriented proper submersion, then for all x K(X) we have Ψk(π!(x)) = π!(ρk(N) Ψk(x)) in K[1k](B), where N E is the stable K–oriented normal bundle of π. To a smooth K–orientation oπ of π we associate a class ρ̂k(oπ) K̂0(E)[1k] refining ρk(N). Our main theorem states that if B is compact, then Ψ̂k(π̂!(x̂)) = π̂(ρ̂k(oπ) Ψ̂k(x̂)) in K̂(B)[1k] for all x̂ K̂(E). We apply this result to the e–invariant of bundles of framed manifolds and ρ–invariants of flat vector bundles.

DOI : 10.2140/gt.2010.14.2349
Keywords: Adams operations, differential $K$–theory

Bunke, Ulrich 1

1 Fakultät für Mathematik, Universität Regensburg, 93040 Regensburg, Germany
@article{GT_2010_14_4_a13,
     author = {Bunke, Ulrich},
     title = {Adams operations in smooth {K{\textendash}theory}},
     journal = {Geometry & topology},
     pages = {2349--2381},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2010},
     doi = {10.2140/gt.2010.14.2349},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.2349/}
}
TY  - JOUR
AU  - Bunke, Ulrich
TI  - Adams operations in smooth K–theory
JO  - Geometry & topology
PY  - 2010
SP  - 2349
EP  - 2381
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.2349/
DO  - 10.2140/gt.2010.14.2349
ID  - GT_2010_14_4_a13
ER  - 
%0 Journal Article
%A Bunke, Ulrich
%T Adams operations in smooth K–theory
%J Geometry & topology
%D 2010
%P 2349-2381
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.2349/
%R 10.2140/gt.2010.14.2349
%F GT_2010_14_4_a13
Bunke, Ulrich. Adams operations in smooth K–theory. Geometry & topology, Tome 14 (2010) no. 4, pp. 2349-2381. doi : 10.2140/gt.2010.14.2349. http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.2349/

[1] J F Adams, On the groups J(X). II, Topology 3 (1965) 137

[2] A Bahri, P Gilkey, The eta invariant, Pinc bordism, and equivariant Spinc bordism for cyclic 2–groups, Pacific J. Math. 128 (1987) 1

[3] P Baum, R G Douglas, K homology and index theory, from: "Operator algebras and applications, Part I (Kingston, Ont., 1980)" (editor R V Kadison), Proc. Sympos. Pure Math. 38, Amer. Math. Soc. (1982) 117

[4] P Baum, N Higson, T Schick, On the equivalence of geometric and analytic K–homology, Pure Appl. Math. Q. 3 (2007) 1

[5] U Bunke, Index theory, eta forms, and Deligne cohomology, Mem. Amer. Math. Soc. 198 (2009)

[6] U Bunke, T Schick, Smooth K–theory, 328, Soc. Math. France (2009)

[7] U Bunke, T Schick, Uniqueness of smooth extensions of generalized cohomology theories, J. Topol. 3 (2010) 110 | DOI

[8] U Bunke, T Schick, I Schröder, M Wiethaup, Landweber exact formal group laws and smooth cohomology theories, Algebr. Geom. Topol. 9 (2009) 1751 | DOI

[9] J Cheeger, J Simons, Differential characters and geometric invariants, from: "Geometry and topology (College Park, Md., 1983/84)" (editors J Alexander, J Harer), Lecture Notes in Math. 1167, Springer (1985) 50 | DOI

[10] D S Freed, Dirac charge quantization and generalized differential cohomology, from: "Surveys in differential geometry" (editor S T Yau), Surv. Differ. Geom. VII, Int. Press (2000) 129

[11] D S Freed, M Hopkins, On Ramond–Ramond fields and K–theory, J. High Energy Phys. (2000) 14 | DOI

[12] D S Freed, R B Melrose, A mod k index theorem, Invent. Math. 107 (1992) 283 | DOI

[13] N Higson, An approach to Z∕k–index theory, Internat. J. Math. 1 (1990) 189 | DOI

[14] M J Hopkins, I M Singer, Quadratic functions in geometry, topology, and M–theory, J. Differential Geom. 70 (2005) 329

[15] P S Landweber, Homological properties of comodules over MU∗(MU) and BP∗(BP), Amer. J. Math. 98 (1976) 591

[16] G Moore, E Witten, Self-duality, Ramond–Ramond fields and K–theory, J. High Energy Phys. (2000) 32 | DOI

[17] D C Ravenel, Complex cobordism and stable homotopy groups of spheres, 347, Amer. Math. Soc. (2004) 395

[18] J Simons, D Sullivan, Axiomatic characterization of ordinary differential cohomology, J. Topol. 1 (2008) 45 | DOI

[19] J Simons, D Sullivan, Structured bundles define differential K–theory. Géométrie différentielle, physique mathématique, mathématiques et société. I, 321, Soc. Math. France (2008) 1

[20] R J Szabo, A Valentino, Ramond–Ramond fields, fractional branes and orbifold differential K–theory, Comm. Math. Phys. 294 (2010) 647 | DOI

[21] Z I Yosimura, Universal coefficient sequences for cohomology theories of CW–spectra, Osaka J. Math. 12 (1975) 305

Cité par Sources :