Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
If there are any –component counterexamples to the Generalized Property R Conjecture, a least genus component of all such counterexamples cannot be a fibered knot. Furthermore, the monodromy of a fibered component of any such counterexample has unexpected restrictions.
The simplest plausible counterexample to the Generalized Property R Conjecture could be a –component link containing the square knot. We characterize all two-component links that contain the square knot and which surger to . We exhibit a family of such links that are probably counterexamples to Generalized Property R. These links can be used to generate slice knots that are not known to be ribbon.
Gompf, Robert E 1 ; Scharlemann, Martin 2 ; Thompson, Abigail 3
@article{GT_2010_14_4_a12, author = {Gompf, Robert E and Scharlemann, Martin and Thompson, Abigail}, title = {Fibered knots and potential counterexamples to the {Property~2R} and {Slice-Ribbon} {Conjectures}}, journal = {Geometry & topology}, pages = {2305--2347}, publisher = {mathdoc}, volume = {14}, number = {4}, year = {2010}, doi = {10.2140/gt.2010.14.2305}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.2305/} }
TY - JOUR AU - Gompf, Robert E AU - Scharlemann, Martin AU - Thompson, Abigail TI - Fibered knots and potential counterexamples to the Property 2R and Slice-Ribbon Conjectures JO - Geometry & topology PY - 2010 SP - 2305 EP - 2347 VL - 14 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.2305/ DO - 10.2140/gt.2010.14.2305 ID - GT_2010_14_4_a12 ER -
%0 Journal Article %A Gompf, Robert E %A Scharlemann, Martin %A Thompson, Abigail %T Fibered knots and potential counterexamples to the Property 2R and Slice-Ribbon Conjectures %J Geometry & topology %D 2010 %P 2305-2347 %V 14 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.2305/ %R 10.2140/gt.2010.14.2305 %F GT_2010_14_4_a12
Gompf, Robert E; Scharlemann, Martin; Thompson, Abigail. Fibered knots and potential counterexamples to the Property 2R and Slice-Ribbon Conjectures. Geometry & topology, Tome 14 (2010) no. 4, pp. 2305-2347. doi : 10.2140/gt.2010.14.2305. http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.2305/
[1] Cappell–Shaneson homotopy spheres are standard, Ann. of Math. (2) 171 (2010) 2171 | DOI
,[2] Reducing Heegaard splittings, Topology Appl. 27 (1987) 275 | DOI
, ,[3] Homology boundary links and the Andrews–Curtis conjecture, Topology 30 (1991) 231 | DOI
, ,[4] The topology of four-dimensional manifolds, J. Differential Geom. 17 (1982) 357
,[5] Man and machine thinking about the smooth 4–dimensional Poincaré conjecture, Quantum Topol. 1 (2010) 171 | DOI
, , , ,[6] Foliations and the topology of 3–manifolds. II, J. Differential Geom. 26 (1987) 461
,[7] Foliations and the topology of 3–manifolds. III, J. Differential Geom. 26 (1987) 479
,[8] Surgery on knots in solid tori, Topology 28 (1989) 1 | DOI
,[9] On Rapaport’s example in presentations of the trivial group, Preprint (1987)
,[10] Killing the Akbulut–Kirby 4–sphere, with relevance to the Andrews–Curtis and Schoenflies problems, Topology 30 (1991) 97 | DOI
,[11] More Cappell–Shaneson spheres are standard, Algebr. Geom. Topol. 10 (2010) 1665 | DOI
,[12] 4–manifolds and Kirby calculus, 20, Amer. Math. Soc. (1999)
, ,[13] Alexander ideals of links, 895, Springer (1981)
,[14] A calculus for framed links in S3, Invent. Math. 45 (1978) 35
,[15] Problems in low-dimensional topology, 2, Amer. Math. Soc. (1997) 35
, editor,[16] Slice knots and property R, Invent. Math. 45 (1978) 57
, ,[17] A note on 4–dimensional handlebodies, Bull. Soc. Math. France 100 (1972) 337
, ,[18] Knots and links, 7, Publish or Perish (1990)
,[19] Surgery on a knot in (surface × I), Algebr. Geom. Topol. 9 (2009) 1825 | DOI
, ,Cité par Sources :