Fibered knots and potential counterexamples to the Property 2R and Slice-Ribbon Conjectures
Geometry & topology, Tome 14 (2010) no. 4, pp. 2305-2347.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

If there are any 2–component counterexamples to the Generalized Property R Conjecture, a least genus component of all such counterexamples cannot be a fibered knot. Furthermore, the monodromy of a fibered component of any such counterexample has unexpected restrictions.

The simplest plausible counterexample to the Generalized Property R Conjecture could be a 2–component link containing the square knot. We characterize all two-component links that contain the square knot and which surger to #2(S1 × S2). We exhibit a family of such links that are probably counterexamples to Generalized Property R. These links can be used to generate slice knots that are not known to be ribbon.

DOI : 10.2140/gt.2010.14.2305
Keywords: Property R, Slice-Ribbon Conjecture, Andrews–Curtis moves

Gompf, Robert E 1 ; Scharlemann, Martin 2 ; Thompson, Abigail 3

1 Mathematics Department, University of Texas at Austin, 1 University Station C1200, Austin TX 78712-0257, USA
2 Mathematics Department, University of California, Santa Barbara, Santa Barbara CA 93106, USA
3 Mathematics Department, University of California, Davis, Davis CA 95616, USA
@article{GT_2010_14_4_a12,
     author = {Gompf, Robert E and Scharlemann, Martin and Thompson, Abigail},
     title = {Fibered knots and potential counterexamples to the {Property~2R} and {Slice-Ribbon} {Conjectures}},
     journal = {Geometry & topology},
     pages = {2305--2347},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2010},
     doi = {10.2140/gt.2010.14.2305},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.2305/}
}
TY  - JOUR
AU  - Gompf, Robert E
AU  - Scharlemann, Martin
AU  - Thompson, Abigail
TI  - Fibered knots and potential counterexamples to the Property 2R and Slice-Ribbon Conjectures
JO  - Geometry & topology
PY  - 2010
SP  - 2305
EP  - 2347
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.2305/
DO  - 10.2140/gt.2010.14.2305
ID  - GT_2010_14_4_a12
ER  - 
%0 Journal Article
%A Gompf, Robert E
%A Scharlemann, Martin
%A Thompson, Abigail
%T Fibered knots and potential counterexamples to the Property 2R and Slice-Ribbon Conjectures
%J Geometry & topology
%D 2010
%P 2305-2347
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.2305/
%R 10.2140/gt.2010.14.2305
%F GT_2010_14_4_a12
Gompf, Robert E; Scharlemann, Martin; Thompson, Abigail. Fibered knots and potential counterexamples to the Property 2R and Slice-Ribbon Conjectures. Geometry & topology, Tome 14 (2010) no. 4, pp. 2305-2347. doi : 10.2140/gt.2010.14.2305. http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.2305/

[1] S Akbulut, Cappell–Shaneson homotopy spheres are standard, Ann. of Math. (2) 171 (2010) 2171 | DOI

[2] A J Casson, C M Gordon, Reducing Heegaard splittings, Topology Appl. 27 (1987) 275 | DOI

[3] T D Cochran, J P Levine, Homology boundary links and the Andrews–Curtis conjecture, Topology 30 (1991) 231 | DOI

[4] M H Freedman, The topology of four-dimensional manifolds, J. Differential Geom. 17 (1982) 357

[5] M H Freedman, R E Gompf, S Morrison, K Walker, Man and machine thinking about the smooth 4–dimensional Poincaré conjecture, Quantum Topol. 1 (2010) 171 | DOI

[6] D Gabai, Foliations and the topology of 3–manifolds. II, J. Differential Geom. 26 (1987) 461

[7] D Gabai, Foliations and the topology of 3–manifolds. III, J. Differential Geom. 26 (1987) 479

[8] D Gabai, Surgery on knots in solid tori, Topology 28 (1989) 1 | DOI

[9] S Gersten, On Rapaport’s example in presentations of the trivial group, Preprint (1987)

[10] R E Gompf, Killing the Akbulut–Kirby 4–sphere, with relevance to the Andrews–Curtis and Schoenflies problems, Topology 30 (1991) 97 | DOI

[11] R E Gompf, More Cappell–Shaneson spheres are standard, Algebr. Geom. Topol. 10 (2010) 1665 | DOI

[12] R E Gompf, A I Stipsicz, 4–manifolds and Kirby calculus, 20, Amer. Math. Soc. (1999)

[13] J A Hillman, Alexander ideals of links, 895, Springer (1981)

[14] R Kirby, A calculus for framed links in S3, Invent. Math. 45 (1978) 35

[15] R Kirby, editor, Problems in low-dimensional topology, 2, Amer. Math. Soc. (1997) 35

[16] R Kirby, P Melvin, Slice knots and property R, Invent. Math. 45 (1978) 57

[17] F Laudenbach, V Poénaru, A note on 4–dimensional handlebodies, Bull. Soc. Math. France 100 (1972) 337

[18] D Rolfsen, Knots and links, 7, Publish or Perish (1990)

[19] M Scharlemann, A A Thompson, Surgery on a knot in (surface × I), Algebr. Geom. Topol. 9 (2009) 1825 | DOI

Cité par Sources :