On the classification of gradient Ricci solitons
Geometry & topology, Tome 14 (2010) no. 4, pp. 2277-2300.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that the only shrinking gradient solitons with vanishing Weyl tensor and Ricci tensor satisfying a weak integral condition are quotients of the standard ones Sn, Sn1 × and n. This gives a new proof of the Hamilton–Ivey–Perelman classification of 3–dimensional shrinking gradient solitons. We also show that gradient solitons with constant scalar curvature and suitably decaying Weyl tensor when noncompact are quotients of n, n1 × , n, Sn1 × or Sn.

DOI : 10.2140/gt.2010.14.2277
Keywords: Ricci soliton, Weyl tensor, locally conformally flat, three manifold, constant scalar curvature

Petersen, Peter 1 ; Wylie, William 2

1 Department of Mathematics, University of California, Los Angeles, 520 Portola Plaza, Los Angeles CA 90095, USA
2 Department of Mathematics, University of Pennsylvania, David Rittenhouse Lab, 209 South 33rd Street, Philadelphia PA 19104, USA
@article{GT_2010_14_4_a10,
     author = {Petersen, Peter and Wylie, William},
     title = {On the classification of gradient {Ricci} solitons},
     journal = {Geometry & topology},
     pages = {2277--2300},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2010},
     doi = {10.2140/gt.2010.14.2277},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.2277/}
}
TY  - JOUR
AU  - Petersen, Peter
AU  - Wylie, William
TI  - On the classification of gradient Ricci solitons
JO  - Geometry & topology
PY  - 2010
SP  - 2277
EP  - 2300
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.2277/
DO  - 10.2140/gt.2010.14.2277
ID  - GT_2010_14_4_a10
ER  - 
%0 Journal Article
%A Petersen, Peter
%A Wylie, William
%T On the classification of gradient Ricci solitons
%J Geometry & topology
%D 2010
%P 2277-2300
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.2277/
%R 10.2140/gt.2010.14.2277
%F GT_2010_14_4_a10
Petersen, Peter; Wylie, William. On the classification of gradient Ricci solitons. Geometry & topology, Tome 14 (2010) no. 4, pp. 2277-2300. doi : 10.2140/gt.2010.14.2277. http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.2277/

[1] P Baird, L Danielo, Three-dimensional Ricci solitons which project to surfaces, J. Reine Angew. Math. 608 (2007) 65 | DOI

[2] A L Besse, Einstein manifolds, 10, Springer (1987)

[3] C Böhm, B Wilking, Nonnegatively curved manifolds with finite fundamental groups admit metrics with positive Ricci curvature, Geom. Funct. Anal. 17 (2007) 665 | DOI

[4] C Böhm, B Wilking, Manifolds with positive curvature operators are space forms, Ann. of Math. 167 (2008) 1079 | DOI

[5] H W Brinkmann, Einstein spaces which are mapped conformally on each other, Math. Ann. 94 (1925) 119 | DOI

[6] E Calabi, An extension of E Hopf’s maximum principle with an application to Riemannian geometry, Duke Math. J. 25 (1958) 45

[7] H D Cao, Recent progress on Ricci solitons, from: "Recent advances in geometric analysis" (editors Y I Lee, C S Lin, M P Tsui), Adv. Lect. Math. 11, Int. Press (2010) 1

[8] X Cao, Compact gradient shrinking Ricci solitons with positive curvature operator, J. Geom. Anal. 17 (2007) 425 | DOI

[9] X Cao, B Wang, Z Zhang, On locally conformally flat gradient shrinking Ricci solitons

[10] G Catino, C Mantegazza, Evolution of the Weyl tensor under the Ricci flow

[11] J Cheeger, T H Colding, Lower bounds on Ricci curvature and the almost rigidity of warped products, Ann. of Math. 144 (1996) 189 | DOI

[12] H Chen, Pointwise –pinched 4-manifolds, Ann. Global Anal. Geom. 9 (1991) 161 | DOI

[13] X Chen, P Lu, G Tian, A note on uniformization of Riemann surfaces by Ricci flow, Proc. Amer. Math. Soc. 134 (2006) 3391 | DOI

[14] B Chow, D Knopf, The Ricci flow : an introduction, 110, Amer. Math. Soc. (2004)

[15] B Chow, P Lu, L Ni, Hamilton’s Ricci flow, 77, Amer. Math. Soc. (2006)

[16] M Eminenti, G La Nave, C Mantegazza, Ricci solitons: the equation point of view, Manuscripta Math. 127 (2008) 345 | DOI

[17] R E Greene, H Wu, C∞ approximations of convex, subharmonic, and plurisubharmonic functions, Ann. Sci. École Norm. Sup. 12 (1979) 47

[18] R S Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982) 255

[19] R S Hamilton, Four-manifolds with positive curvature operator, J. Differential Geom. 24 (1986) 153

[20] R S Hamilton, The Ricci flow on surfaces, from: "Mathematics and general relativity (Santa Cruz, CA, 1986)" (editor J A Isenberg), Contemp. Math. 71, Amer. Math. Soc. (1988) 237

[21] T Ivey, Ricci solitons on compact three-manifolds, Differential Geom. Appl. 3 (1993) 301 | DOI

[22] B Kotschwar, On rotationally invariant shrinking Ricci solitons, Pacific J. Math. 236 (2008) 73 | DOI

[23] J Lauret, Ricci soliton homogeneous nilmanifolds, Math. Ann. 319 (2001) 715 | DOI

[24] A Lichnerowicz, Variétés kählériennes à première classe de Chern non negative et variétés riemanniennes à courbure de Ricci généralisée non negative, J. Differential Geometry 6 (1971) 47

[25] J Lott, On the long-time behavior of type-III Ricci flow solutions, Math. Ann. 339 (2007) 627 | DOI

[26] R Mcowen, Partial differential equations. Methods and applications, Prentice Hall (1996)

[27] F Morgan, Manifolds with density, Notices Amer. Math. Soc. 52 (2005) 853

[28] O Munteanu, N Sesum, On gradient Ricci solitons

[29] A Naber, Noncompact shrinking 4–solitons with nonnegative curvature

[30] L Ni, Ancient solutions to Kähler–Ricci flow, Math. Res. Lett. 12 (2005) 633

[31] L Ni, N Wallach, On a classification of gradient shrinking solitons, Math. Res. Lett. 15 (2008) 941

[32] G Perelman, The entropy formula for the Ricci flow and its geometric applications

[33] G Perelman, Ricci flow with surgery on three manifolds

[34] P Petersen, W Wylie, On gradient Ricci solitons with symmetry, Proc. Amer. Math. Soc. 137 (2009) 2085 | DOI

[35] P Petersen, W Wylie, Rigidity of gradient Ricci solitons, Pacific J. Math. 241 (2009) 329 | DOI

[36] G Wei, W Wylie, Comparison geometry for the Bakry–Emery Ricci tensor, J. Differential Geom. 83 (2009) 377

[37] W Wylie, Complete shrinking Ricci solitons have finite fundamental group, Proc. Amer. Math. Soc. 136 (2008) 1803 | DOI

[38] S T Yau, Some function-theoretic properties of complete Riemannian manifold and their applications to geometry, Indiana Univ. Math. J. 25 (1976) 659

[39] Z H Zhang, Gradient shrinking solitons with vanishing Weyl tensor, Pacific J. Math. 242 (2009) 189

Cité par Sources :