Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove that two angle-compatible Coxeter generating sets of a given finitely generated Coxeter group are conjugate provided one of them does not admit any elementary twist. This confirms a basic case of a general conjecture which describes a potential solution to the isomorphism problem for Coxeter groups.
Caprace, Pierre-Emmanuel 1 ; Przytycki, Piotr 2
@article{GT_2010_14_4_a9, author = {Caprace, Pierre-Emmanuel and Przytycki, Piotr}, title = {Twist-rigid {Coxeter} groups}, journal = {Geometry & topology}, pages = {2243--2275}, publisher = {mathdoc}, volume = {14}, number = {4}, year = {2010}, doi = {10.2140/gt.2010.14.2243}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.2243/} }
Caprace, Pierre-Emmanuel; Przytycki, Piotr. Twist-rigid Coxeter groups. Geometry & topology, Tome 14 (2010) no. 4, pp. 2243-2275. doi : 10.2140/gt.2010.14.2243. http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.2243/
[1] Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV : Groupes de Coxeter et systèmes de Tits. Chapitre V : Groupes engendrés par des réflexions. Chapitre VI : systèmes de racines, 1337, Hermann (1968)
,[2] Rigidity of Coxeter groups and Artin groups, from: "Proceedings of the Conference on Geometric and Combinatorial Group Theory, Part I (Haifa, 2000)", Geom. Dedicata 94 (2002) 91 | DOI
, , , ,[3] A finiteness property and an automatic structure for Coxeter groups, Math. Ann. 296 (1993) 179 | DOI
, ,[4] Reflection rigidity of 2–spherical Coxeter groups, Proc. Lond. Math. Soc. 94 (2007) 520 | DOI
, ,[5] Rigidité à réflexions dans les groupes de Coxeter, dissertation, Université Libre de Bruxelles (2006)
,[6] On the root system of a Coxeter group, Comm. Algebra 10 (1982) 611 | DOI
,[7] A note on subgroups generated by reflections in Coxeter groups, Arch. Math. Basel 53 (1989) 543 | DOI
,[8] Le cône imaginaire d’une base de racine sur R (résumé), Thèse d’état, Université d’Orsay (1990) 275
,[9] Isomorphisms of Coxeter groups which do not preserve reflections, Preprint (2004)
, ,[10] On outer automorphism groups of Coxeter groups, Manuscripta Math. 93 (1997) 499 | DOI
, , ,[11] The conjugacy problem for Coxeter groups, Groups Geom. Dyn. 3 (2009) 71 | DOI
,[12] Angle-deformations in Coxeter groups, Algebr. Geom. Topol. 8 (2008) 2175 | DOI
, ,[13] Geometry of the complex of curves. II. Hierarchical structure, Geom. Funct. Anal. 10 (2000) 902 | DOI
, ,[14] The isomorphism problem for Coxeter groups, from: "The Coxeter legacy. Reflections and projections" (editors C Davis, E W Ellers), Amer. Math. Soc. (2006) 1
,[15] Rigidity of skew-angled Coxeter groups, Adv. Geom. 2 (2002) 391 | DOI
, ,[16] Chordal Coxeter groups, Geom. Dedicata 136 (2008) 57 | DOI
, ,Cité par Sources :