Twist-rigid Coxeter groups
Geometry & topology, Tome 14 (2010) no. 4, pp. 2243-2275.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove that two angle-compatible Coxeter generating sets of a given finitely generated Coxeter group are conjugate provided one of them does not admit any elementary twist. This confirms a basic case of a general conjecture which describes a potential solution to the isomorphism problem for Coxeter groups.

DOI : 10.2140/gt.2010.14.2243
Keywords: Coxeter groups, isomorphism problem, twists, rigidity, hierarchy

Caprace, Pierre-Emmanuel 1 ; Przytycki, Piotr 2

1 Département de Mathématiques, Université catholique de Louvain, Chemin du Cyclotron 2, 1348 Louvain-la-Neuve, Belgium
2 Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-956 Warsaw, Poland
@article{GT_2010_14_4_a9,
     author = {Caprace, Pierre-Emmanuel and Przytycki, Piotr},
     title = {Twist-rigid {Coxeter} groups},
     journal = {Geometry & topology},
     pages = {2243--2275},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2010},
     doi = {10.2140/gt.2010.14.2243},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.2243/}
}
TY  - JOUR
AU  - Caprace, Pierre-Emmanuel
AU  - Przytycki, Piotr
TI  - Twist-rigid Coxeter groups
JO  - Geometry & topology
PY  - 2010
SP  - 2243
EP  - 2275
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.2243/
DO  - 10.2140/gt.2010.14.2243
ID  - GT_2010_14_4_a9
ER  - 
%0 Journal Article
%A Caprace, Pierre-Emmanuel
%A Przytycki, Piotr
%T Twist-rigid Coxeter groups
%J Geometry & topology
%D 2010
%P 2243-2275
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.2243/
%R 10.2140/gt.2010.14.2243
%F GT_2010_14_4_a9
Caprace, Pierre-Emmanuel; Przytycki, Piotr. Twist-rigid Coxeter groups. Geometry & topology, Tome 14 (2010) no. 4, pp. 2243-2275. doi : 10.2140/gt.2010.14.2243. http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.2243/

[1] N Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV : Groupes de Coxeter et systèmes de Tits. Chapitre V : Groupes engendrés par des réflexions. Chapitre VI : systèmes de racines, 1337, Hermann (1968)

[2] N Brady, J P Mccammond, B Mühlherr, W D Neumann, Rigidity of Coxeter groups and Artin groups, from: "Proceedings of the Conference on Geometric and Combinatorial Group Theory, Part I (Haifa, 2000)", Geom. Dedicata 94 (2002) 91 | DOI

[3] B Brink, R B Howlett, A finiteness property and an automatic structure for Coxeter groups, Math. Ann. 296 (1993) 179 | DOI

[4] P E Caprace, B Mühlherr, Reflection rigidity of 2–spherical Coxeter groups, Proc. Lond. Math. Soc. 94 (2007) 520 | DOI

[5] M Carette, Rigidité à réflexions dans les groupes de Coxeter, dissertation, Université Libre de Bruxelles (2006)

[6] V V Deodhar, On the root system of a Coxeter group, Comm. Algebra 10 (1982) 611 | DOI

[7] V V Deodhar, A note on subgroups generated by reflections in Coxeter groups, Arch. Math. Basel 53 (1989) 543 | DOI

[8] J Y Hée, Le cône imaginaire d’une base de racine sur R (résumé), Thèse d’état, Université d’Orsay (1990) 275

[9] R B Howlett, B Mühlherr, Isomorphisms of Coxeter groups which do not preserve reflections, Preprint (2004)

[10] R B Howlett, P J Rowley, D E Taylor, On outer automorphism groups of Coxeter groups, Manuscripta Math. 93 (1997) 499 | DOI

[11] D Krammer, The conjugacy problem for Coxeter groups, Groups Geom. Dyn. 3 (2009) 71 | DOI

[12] T Marquis, B Mühlherr, Angle-deformations in Coxeter groups, Algebr. Geom. Topol. 8 (2008) 2175 | DOI

[13] H A Masur, Y N Minsky, Geometry of the complex of curves. II. Hierarchical structure, Geom. Funct. Anal. 10 (2000) 902 | DOI

[14] B Mühlherr, The isomorphism problem for Coxeter groups, from: "The Coxeter legacy. Reflections and projections" (editors C Davis, E W Ellers), Amer. Math. Soc. (2006) 1

[15] B Mühlherr, R Weidmann, Rigidity of skew-angled Coxeter groups, Adv. Geom. 2 (2002) 391 | DOI

[16] J G Ratcliffe, S T Tschantz, Chordal Coxeter groups, Geom. Dedicata 136 (2008) 57 | DOI

Cité par Sources :