Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show that the introduction of polar coordinates in toric geometry smoothes a wide class of equivariant mappings, rendering them locally trivial in the topological category. As a consequence, we show that the Betti realization of a smooth proper and exact mapping of log analytic spaces is a topological fibration, whose fibers are orientable manifolds (possibly with boundary). This turns out to be true even for certain noncoherent log structures, including some families familiar from mirror symmetry. The moment mapping plays a key role in our proof.
Nakayama, Chikara 1 ; Ogus, Arthur 2
@article{GT_2010_14_4_a8, author = {Nakayama, Chikara and Ogus, Arthur}, title = {Relative rounding in toric and logarithmic geometry}, journal = {Geometry & topology}, pages = {2189--2241}, publisher = {mathdoc}, volume = {14}, number = {4}, year = {2010}, doi = {10.2140/gt.2010.14.2189}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.2189/} }
TY - JOUR AU - Nakayama, Chikara AU - Ogus, Arthur TI - Relative rounding in toric and logarithmic geometry JO - Geometry & topology PY - 2010 SP - 2189 EP - 2241 VL - 14 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.2189/ DO - 10.2140/gt.2010.14.2189 ID - GT_2010_14_4_a8 ER -
Nakayama, Chikara; Ogus, Arthur. Relative rounding in toric and logarithmic geometry. Geometry & topology, Tome 14 (2010) no. 4, pp. 2189-2241. doi : 10.2140/gt.2010.14.2189. http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.2189/
[1] Théorie des topos et cohomologie étale des schémas. Tome 2, 270, Springer (1972)
, , ,[2] Introduction to toric varieties, 131, Princeton Univ. Press (1993)
,[3] Lectures on algebraic topology, W A Benjamin (1967)
,[4] Mirror symmetry via logarithmic degeneration data I, J. Differential Geom. 72 (2006) 169
, ,[5] Groupes de monodromie en géométrie algébrique I, 288, Springer (1972)
,[6] Triangulations of algebraic sets, from: "Algebraic geometry (Proc. Sympos. Pure Math., Vol. 29, Humboldt State Univ., Arcata, Calif., 1974)" (editor R Hartshorne), Amer. Math. Soc. (1975) 165
,[7] Quasi-unipotent logarithmic Riemann–Hilbert correspondences, J. Math. Sci. Univ. Tokyo 12 (2005) 1
, , ,[8] Cohomology of sheaves, , Springer (1986)
,[9] Higher direct images of local systems in log Betti cohomology, J. Math. Sci. Univ. Tokyo 15 (2008) 291
, ,[10] Sheaves on manifolds, 292, Springer (1990)
, ,[11] Logarithmic structures of Fontaine–Illusie, from: "Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988)" (editor J I Igusa), Johns Hopkins Univ. Press (1989) 191
,[12] Toric singularities, Amer. J. Math. 116 (1994) 1073 | DOI
,[13] Log Betti cohomology, log étale cohomology, and log de Rham cohomology of log schemes over C, Kodai Math. J. 22 (1999) 161 | DOI
, ,[14] Introduction to logarithmic algebraic geometry, in preparation
,[15] Relatively coherent log structures, in preparation
,[16] On the logarithmic Riemann–Hilbert correspondence, Doc. Math. (2003) 655
,[17] Algebraic statistics for computational biology, Cambridge Univ. Press (2005)
, , editors,[18] Deformation of homeomorphisms on stratified sets. I, II, Comment. Math. Helv. 47 (1972) 123, 137
,[19] Recovery of vanishing cycles by log geometry: case of several variables, from: "Commutative algebra, algebraic geometry, and computational methods (Hanoi, 1996)" (editor D Eisenbud), Springer (1999) 135
,[20] Recovery of vanishing cycles by log geometry, Tohoku Math. J. 53 (2001) 1 | DOI
,[21] Dualité dans la cohomologie des espaces localement compacts, from: "Séminaire Bourbaki 1965/1966, Vol. 9, Exp. No. 300", Soc. Math. France (1995) 337
,Cité par Sources :