Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We study fillings of contact structures supported by planar open books by analyzing positive factorizations of their monodromy. Our method is based on Wendl’s theorem on symplectic fillings of planar open books. We prove that every virtually overtwisted contact structure on has a unique filling, and describe fillable and nonfillable tight contact structures on certain Seifert fibered spaces.
Plamenevskaya, Olga 1 ; Van Horn-Morris, Jeremy 2
@article{GT_2010_14_4_a5, author = {Plamenevskaya, Olga and Van Horn-Morris, Jeremy}, title = {Planar open books, monodromy factorizations and symplectic fillings}, journal = {Geometry & topology}, pages = {2077--2101}, publisher = {mathdoc}, volume = {14}, number = {4}, year = {2010}, doi = {10.2140/gt.2010.14.2077}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.2077/} }
TY - JOUR AU - Plamenevskaya, Olga AU - Van Horn-Morris, Jeremy TI - Planar open books, monodromy factorizations and symplectic fillings JO - Geometry & topology PY - 2010 SP - 2077 EP - 2101 VL - 14 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.2077/ DO - 10.2140/gt.2010.14.2077 ID - GT_2010_14_4_a5 ER -
%0 Journal Article %A Plamenevskaya, Olga %A Van Horn-Morris, Jeremy %T Planar open books, monodromy factorizations and symplectic fillings %J Geometry & topology %D 2010 %P 2077-2101 %V 14 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.2077/ %R 10.2140/gt.2010.14.2077 %F GT_2010_14_4_a5
Plamenevskaya, Olga; Van Horn-Morris, Jeremy. Planar open books, monodromy factorizations and symplectic fillings. Geometry & topology, Tome 14 (2010) no. 4, pp. 2077-2101. doi : 10.2140/gt.2010.14.2077. http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.2077/
[1] Lefschetz fibrations on compact Stein surfaces, Geom. Topol. 5 (2001) 319 | DOI
, ,[2] Handle moves in contact surgery diagrams, J. Topol. 2 (2009) 105 | DOI
, ,[3] Filling by holomorphic discs and its applications, from: "Geometry of low-dimensional manifolds, 2 (Durham, 1989)" (editors S K Donaldson, C B Thomas), London Math. Soc. Lecture Note Ser. 151, Cambridge Univ. Press (1990) 45
,[4] Classification of topologically trivial Legendrian knots, from: "Geometry, topology, and dynamics (Montreal, PQ, 1995)" (editor F Lalonde), CRM Proc. Lecture Notes 15, Amer. Math. Soc. (1998) 17
, ,[5] Planar open book decompositions and contact structures, Int. Math. Res. Not. (2004) 4255 | DOI
,[6] Lectures on open book decompositions and contact structures, from: "Floer homology, gauge theory, and low-dimensional topology" (editors D A Ellwood, P Ozváth, A I Stipsicz, Z Szabó), Clay Math. Proc. 5, Amer. Math. Soc. (2006) 103
,[7] Classification of tight contact structures on small Seifert 3–manifolds with e0 ≥ 0, Proc. Amer. Math. Soc. 134 (2006) 909 | DOI
, , ,[8] Tight contact structures on some small Seifert fibered 3–manifolds, Amer. J. Math. 129 (2007) 1403 | DOI
, , ,[9] Géométrie de contact : de la dimension trois vers les dimensions supérieures, from: "Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002)", Higher Ed. Press (2002) 405
,[10] Toward a topological characterization of symplectic manifolds, J. Symplectic Geom. 2 (2004) 177
,[11] 4–manifolds and Kirby calculus, 20, Amer. Math. Soc. (1999)
, ,[12] Stein fillings of lens spaces, Commun. Contemp. Math. 5 (2003) 967 | DOI
,[13] On the classification of tight contact structures. I, Geom. Topol. 4 (2000) 309 | DOI
,[14] Right-veering diffeomorphisms of compact surfaces with boundary, Invent. Math. 169 (2007) 427 | DOI
, , ,[15] On the contact class in Heegaard Floer homology, J. Differential Geom. 83 (2009) 289
, , ,[16] Monopoles and lens space surgeries, Ann. of Math. 165 (2007) 457 | DOI
, , , ,[17] On symplectic fillings of 3–manifolds, from: "Proceedings of 6th Gökova Geometry-Topology Conference", Turkish J. Math. 23 (1999) 151
,[18] On symplectic fillings of lens spaces, Trans. Amer. Math. Soc. 360 (2008) 765 | DOI
,[19] Ozsváth–Szabó invariants and tight contact 3–manifolds. III, J. Symplectic Geom. 5 (2007) 357
, ,[20] On the existence of tight contact structures on Seifert fibered 3–manifolds, Duke Math. J. 148 (2009) 175 | DOI
, ,[21] Geometric presentations for the pure braid group, J. Knot Theory Ramifications 18 (2009) 1 | DOI
, ,[22] The structure of rational and ruled symplectic 4–manifolds, J. Amer. Math. Soc. 3 (1990) 679 | DOI
,[23] Simple singularities and topology of symplectically filling 4–manifold, Comment. Math. Helv. 74 (1999) 575 | DOI
, ,[24] Planar open books and Floer homology, Int. Math. Res. Not. (2005) 3385 | DOI
, , ,[25] Contact structures with distinct Heegaard Floer invariants, Math. Res. Lett. 11 (2004) 547
,[26] Contact fiber sums, monodromy maps, and symplectic fillings, in preparation
,[27] Strongly fillable contact manifolds and J–holomorphic foliations, Duke Math. J. 151 (2010) 337 | DOI
,[28] Tight contact small seifert spaces with e0≠0,−1,−2
,Cité par Sources :