Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show by explicit examples that in many degrees in a stable range the homotopy groups of the moduli spaces of Riemannian metrics of positive scalar curvature on closed smooth manifolds can be non-trivial. This is achieved by further developing and then applying a family version of the surgery construction of Gromov–Lawson to certain nonlinear smooth sphere bundles constructed by Hatcher.
Botvinnik, Boris 1 ; Hanke, Bernhard 2 ; Schick, Thomas 3 ; Walsh, Mark 4
@article{GT_2010_14_4_a4, author = {Botvinnik, Boris and Hanke, Bernhard and Schick, Thomas and Walsh, Mark}, title = {Homotopy groups of the moduli space of metrics of positive scalar curvature}, journal = {Geometry & topology}, pages = {2047--2076}, publisher = {mathdoc}, volume = {14}, number = {4}, year = {2010}, doi = {10.2140/gt.2010.14.2047}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.2047/} }
TY - JOUR AU - Botvinnik, Boris AU - Hanke, Bernhard AU - Schick, Thomas AU - Walsh, Mark TI - Homotopy groups of the moduli space of metrics of positive scalar curvature JO - Geometry & topology PY - 2010 SP - 2047 EP - 2076 VL - 14 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.2047/ DO - 10.2140/gt.2010.14.2047 ID - GT_2010_14_4_a4 ER -
%0 Journal Article %A Botvinnik, Boris %A Hanke, Bernhard %A Schick, Thomas %A Walsh, Mark %T Homotopy groups of the moduli space of metrics of positive scalar curvature %J Geometry & topology %D 2010 %P 2047-2076 %V 14 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.2047/ %R 10.2140/gt.2010.14.2047 %F GT_2010_14_4_a4
Botvinnik, Boris; Hanke, Bernhard; Schick, Thomas; Walsh, Mark. Homotopy groups of the moduli space of metrics of positive scalar curvature. Geometry & topology, Tome 14 (2010) no. 4, pp. 2047-2076. doi : 10.2140/gt.2010.14.2047. http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.2047/
[1] The relative Yamabe invariant, Comm. Anal. Geom. 10 (2002) 935
, ,[2] Finite groups and hyperbolic manifolds, Invent. Math. 162 (2005) 459 | DOI
, ,[3] Einstein manifolds, 10, Springer (1987)
,[4] The rational homotopy type of ΩWhDiff(∗), from: "Algebraic topology, Aarhus 1982 (Aarhus, 1982)", Lecture Notes in Math. 1051, Springer (1984) 25 | DOI
,[5] The eta invariant and metrics of positive scalar curvature, Math. Ann. 302 (1995) 507 | DOI
, ,[6] Une stratification de l’espace des structures riemanniennes, Compositio Math. 30 (1975) 1
,[7] Sheaf theory, 170, Springer (1997)
,[8] The manifold of Riemannian metrics, from: "Global Analysis (Proc. Sympos. Pure Math., Vol. XV, Berkeley, Calif., 1968)", Amer. Math. Soc. (1970) 11
,[9] On the rational homotopy groups of the diffeomorphism groups of discs, spheres and aspherical manifolds, from: "Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Part 1", Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc. (1978) 325
, ,[10] Riemannian metrics of positive scalar curvature on compact manifolds with boundary, Ann. Global Anal. Geom. 5 (1987) 179 | DOI
,[11] Morse theory and higher torsion invariants I
,[12] The classification of simply connected manifolds of positive scalar curvature, Ann. of Math. 111 (1980) 423 | DOI
, ,[13] Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, Inst. Hautes Études Sci. Publ. Math. (1983)
, ,[14] Higher –genera on certain non-spin S1–manifolds, Topology Appl. 157 (2010) 1658 | DOI
, ,[15] Harmonic spinors, Advances in Math. 14 (1974) 1 | DOI
,[16] Higher Franz–Reidemeister torsion, 31, American Mathematical Society (2002)
,[17] Higher complex torsion and the framing principle, Mem. Amer. Math. Soc. 177 (2005)
,[18] Axioms for higher torsion invariants of smooth bundles, J. Topol. 1 (2008) 159 | DOI
,[19] The convenient setting of global analysis, 53, American Mathematical Society (1997)
, ,[20] Spin geometry, 38, Princeton University Press (1989)
, ,[21] On higher eta-invariants and metrics of positive scalar curvature, –Theory 24 (2001) 341 | DOI
, ,[22] Bernoulli numbers, homotopy groups, and a theorem of Rohlin, from: "Proc Internat. Congress Math. 1958", Cambridge Univ. Press (1960) 454
, ,[23] The group of isometries of a Riemannian manifold, Ann. of Math. 40 (1939) 400 | DOI
, ,[24] Bordism, rho-invariants and the Baum–Connes conjecture, J. Noncommut. Geom. 1 (2007) 27 | DOI
, ,[25] C∗–algebras, positive scalar curvature, and the Novikov conjecture, Inst. Hautes Études Sci. Publ. Math. (1983)
,[26] A counterexample to the (unstable) Gromov–Lawson–Rosenberg conjecture, Topology 37 (1998) 1165 | DOI
,[27] Simply connected manifolds of positive scalar curvature, Ann. of Math. 136 (1992) 511 | DOI
,[28] Metrics of positive scalar curvature and generalised Morse functions, part 1, Mem. Amer. Math. Soc. (2010) | DOI
,[29] Metrics of positive scalar curvature and generalised Morse functions, part 2
,Cité par Sources :