Perturbative invariants of 3–manifolds with the first Betti number 1
Geometry & topology, Tome 14 (2010) no. 4, pp. 1993-2045.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

It is known that perturbative invariants of rational homology 3–spheres can be constructed by using arithmetic perturbative expansion of quantum invariants of them. However, we could not make arithmetic perturbative expansion of quantum invariants for 3–manifolds with positive Betti numbers by the same method.

In this paper, we explain how to make arithmetic perturbative expansion of quantum SO(3) invariants of 3–manifolds with the first Betti number 1. Further, motivated by this expansion, we construct perturbative invariants of such 3–manifolds. We show some properties of the perturbative invariants, which imply that their coefficients are independent invariants.

DOI : 10.2140/gt.2010.14.1993
Keywords: 3–manifold, quantum invariant, perturbative invariant

Ohtsuki, Tomotada 1

1 Research Institute for Mathematical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
@article{GT_2010_14_4_a3,
     author = {Ohtsuki, Tomotada},
     title = {Perturbative invariants of 3{\textendash}manifolds with the first {Betti} number 1},
     journal = {Geometry & topology},
     pages = {1993--2045},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2010},
     doi = {10.2140/gt.2010.14.1993},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.1993/}
}
TY  - JOUR
AU  - Ohtsuki, Tomotada
TI  - Perturbative invariants of 3–manifolds with the first Betti number 1
JO  - Geometry & topology
PY  - 2010
SP  - 1993
EP  - 2045
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.1993/
DO  - 10.2140/gt.2010.14.1993
ID  - GT_2010_14_4_a3
ER  - 
%0 Journal Article
%A Ohtsuki, Tomotada
%T Perturbative invariants of 3–manifolds with the first Betti number 1
%J Geometry & topology
%D 2010
%P 1993-2045
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.1993/
%R 10.2140/gt.2010.14.1993
%F GT_2010_14_4_a3
Ohtsuki, Tomotada. Perturbative invariants of 3–manifolds with the first Betti number 1. Geometry & topology, Tome 14 (2010) no. 4, pp. 1993-2045. doi : 10.2140/gt.2010.14.1993. http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.1993/

[1] D Bar-Natan, S Garoufalidis, L Rozansky, D P Thurston, The Århus integral of rational homology 3–spheres I : A highly non trivial flat connection on S3, Selecta Math. N.S. 8 (2002) 315 | DOI

[2] D Bar-Natan, S Garoufalidis, L Rozansky, D P Thurston, The Århus integral of rational homology 3–spheres II : Invariance and universality, Selecta Math. N.S. 8 (2002) 341 | DOI

[3] D Bar-Natan, S Garoufalidis, L Rozansky, D P Thurston, The Århus integral of rational homology 3–spheres III : Relation with the Le–Murakami–Ohtsuki invariant, Selecta Math. N.S. 10 (2004) 305 | DOI

[4] S V Chmutov, A N Varchenko, Remarks on the Vassiliev knot invariants coming from sl2, Topology 36 (1997) 153 | DOI

[5] R Fenn, C Rourke, On Kirby’s calculus of links, Topology 18 (1979) 1 | DOI

[6] S Garoufalidis, N Habegger, The Alexander polynomial and finite type 3–manifold invariants, Math. Ann. 316 (2000) 485 | DOI

[7] S Garoufalidis, A Kricker, A surgery view of boundary links, Math. Ann. 327 (2003) 103 | DOI

[8] S Garoufalidis, A Kricker, Finite type invariants of cyclic branched covers, Topology 43 (2004) 1247 | DOI

[9] S Garoufalidis, A Kricker, A rational noncommutative invariant of boundary links, Geom. Topol. 8 (2004) 115 | DOI

[10] N Habegger, A computation of the universal quantum 3–manifold invariant for manifolds of rank greater than 2, preprint (1996)

[11] N Habegger, A Beliakova, The Casson–Walker–Lescop invariant as a quantum 3–manifold invariant, J. Knot Theory Ramifications 9 (2000) 459 | DOI

[12] K Habiro, Claspers and finite type invariants of links, Geom. Topol. 4 (2000) 1 | DOI

[13] K Ireland, M Rosen, A classical introduction to modern number theory, 84, Springer (1990)

[14] R Kirby, P Melvin, The 3–manifold invariants of Witten and Reshetikhin–Turaev for sl(2, C), Invent. Math. 105 (1991) 473 | DOI

[15] S Kojima, M Yamasaki, Some new invariants of links, Invent. Math. 54 (1979) 213 | DOI

[16] M Kontsevich, Vassiliev’s knot invariants, from: "I. M. Gel’fand Seminar", Adv. Soviet Math. 16, Amer. Math. Soc. (1993) 137

[17] A Kricker, The lines of the Kontsevich integral and Rozansky’s rationality conjecture

[18] A Kricker, A surgery formula for the 2–loop piece of the LMO invariant of a pair, from: "Invariants of knots and 3–manifolds (Kyoto, 2001)", Geom. Topol. Monogr. 4, Geom. Topol. Publ., Coventry (2002) 161 | DOI

[19] T T Q Le, J Murakami, T Ohtsuki, On a universal perturbative invariant of 3–manifolds, Topology 37 (1998) 539 | DOI

[20] C Lescop, Sur l’invariant de Casson–Walker : formule de chirurgie globale et généralisation aux variétés de dimension 3 fermées orientées, C. R. Acad. Sci. Paris Sér. I Math. 315 (1992) 437

[21] C Lescop, Global surgery formula for the Casson–Walker invariant, 140, Princeton University Press (1996)

[22] J Lieberum, The LMO-invariant of 3–manifolds of rank one and the Alexander polynomial, Math. Ann. 318 (2000) 761 | DOI

[23] H Murakami, Quantum SO(3)–invariants dominate the SU(2)-invariant of Casson and Walker, Math. Proc. Cambridge Philos. Soc. 117 (1995) 237 | DOI

[24] J Neukirch, Algebraic number theory, 322, Springer (1999)

[25] T Ohtsuki, A refinement of the LMO invariant for 3–manifolds with the first Betti number 1, in preparation

[26] T Ohtsuki, A polynomial invariant of rational homology 3–spheres, Invent. Math. 123 (1996) 241 | DOI

[27] T Ohtsuki, The perturbative SO(3) invariant of rational homology 3–spheres recovers from the universal perturbative invariant, Topology 39 (2000) 1103 | DOI

[28] T Ohtsuki, Quantum invariants, 29, World Scientific Publishing Co. (2002)

[29] T Ohtsuki, Invariants of knots and 3–dimensional manifolds, Sūgaku 55 (2003) 337

[30] T Ohtsuki, A cabling formula for the 2–loop polynomial of knots, Publ. Res. Inst. Math. Sci. 40 (2004) 949

[31] T Ohtsuki, Invariants of knots derived from equivariant linking matrices of their surgery presentations, preprint (2006)

[32] T Ohtsuki, Equivariant quantum invariants of the infinite cyclic covers of knot complements, from: "Intelligence of low dimensional topology 2006", Ser. Knots Everything 40, World Sci. Publ., Hackensack, NJ (2007) 253 | DOI

[33] T Ohtsuki, On the 2–loop polynomial of knots, Geom. Topol. 11 (2007) 1357 | DOI

[34] N Reshetikhin, V G Turaev, Invariants of 3–manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991) 547 | DOI

[35] P Ribenboim, Classical theory of algebraic numbers, , Springer (2001)

[36] L Rozansky, A contribution of a U(1)–reducible connection to quantum invariants of links I : R–matrix and Burau representation

[37] L Rozansky, A contribution of a U(1)–reducible connection to quantum invariants of links II : Links in rational homology spheres

[38] L Rozansky, Witten’s invariants of rational homology spheres at prime values of K and trivial connection contribution, Comm. Math. Phys. 180 (1996) 297

[39] L Rozansky, Higher order terms in the Melvin–Morton expansion of the colored Jones polynomial, Comm. Math. Phys. 183 (1997) 291 | DOI

[40] L Rozansky, On p–adic convergence of perturbative invariants of some rational homology spheres, Duke Math. J. 91 (1998) 353 | DOI

[41] L Rozansky, The universal R–matrix, Burau representation, and the Melvin–Morton expansion of the colored Jones polynomial, Adv. Math. 134 (1998) 1 | DOI

[42] L Rozansky, A rational structure of generating functions for Vassiliev invariants, notes accompanying lectures at the Summer School on Quantum Invariants of Knots and Three-Manifolds, Joseph Fourier Institute, University of Grenoble (1999)

[43] K Walker, An extension of Casson’s invariant, 126, Princeton University Press (1992)

[44] E Witten, Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989) 351

Cité par Sources :