Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Every cusped, finite-volume hyperbolic three-manifold has a canonical decomposition into ideal polyhedra. We study the canonical decomposition of the hyperbolic manifold obtained by filling some (but not all) of the cusps with solid tori: in a broad range of cases, generic in an appropriate sense, this decomposition can be predicted from that of the unfilled manifold (a similar result has been independently announced by Akiyoshi [Kokyuroku 1329, RIMS, Kyoto (2003) 121-132]). We also find the canonical decompositions of all hyperbolic Dehn fillings on one cusp of the Whitehead link complement.
Guéritaud, François 1 ; Schleimer, Saul 2
@article{GT_2010_14_1_a4, author = {Gu\'eritaud, Fran\c{c}ois and Schleimer, Saul}, title = {Canonical triangulations of {Dehn} fillings}, journal = {Geometry & topology}, pages = {193--242}, publisher = {mathdoc}, volume = {14}, number = {1}, year = {2010}, doi = {10.2140/gt.2010.14.193}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.193/} }
TY - JOUR AU - Guéritaud, François AU - Schleimer, Saul TI - Canonical triangulations of Dehn fillings JO - Geometry & topology PY - 2010 SP - 193 EP - 242 VL - 14 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.193/ DO - 10.2140/gt.2010.14.193 ID - GT_2010_14_1_a4 ER -
Guéritaud, François; Schleimer, Saul. Canonical triangulations of Dehn fillings. Geometry & topology, Tome 14 (2010) no. 1, pp. 193-242. doi : 10.2140/gt.2010.14.193. http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.193/
[1] On the hyperbolic manifolds obtained from the Whitehead link, from: "Analysis of discrete groups, II (Kyoto, 1996)", Sūrikaisekikenkyūsho Kōkyūroku 1022 (1997) 213
,[2] On the Ford domains of once-punctured torus groups, from: "Hyperbolic spaces and related topics (Japanese) (Kyoto, 1998)", Sūrikaisekikenkyūsho Kōkyūroku 1104 (1999) 109
,[3] Finiteness of polyhedral decompositions of cusped hyperbolic manifolds obtained by the Epstein–Penner's method, Proc. Amer. Math. Soc. 129 (2001) 2431
,[4] Canonical decompositions of cusped hyperbolic 3-manifolds obtained by Dehn filling, from: "Perspectives of hyperbolic spaces", Kokyuroku 1329, RIMS (2003) 121
,[5] Comparing two convex hull constructions for cusped hyperbolic manifolds, from: "Kleinian groups and hyperbolic 3-manifolds (Warwick, 2001)" (editors Y Komori, V Markovic, C Series), London Math. Soc. Lecture Note Ser. 299, Cambridge Univ. Press (2003) 209
, ,[6] J\o rgensen's picture of punctured torus groups and its refinement, from: "Kleinian groups and hyperbolic 3-manifolds (Warwick, 2001)" (editors Y Komori, V Markovic, C Series), London Math. Soc. Lecture Note Ser. 299, Cambridge Univ. Press (2003) 247
, , , ,[7] Punctured torus groups and $2$–bridge knot groups. I, Lecture Notes in Math. 1909, Springer (2007)
, , , ,[8] A census of cusped hyperbolic $3$–manifolds, Math. Comp. 68 (1999) 321
, , ,[9] Constructing hyperbolic $3$–manifolds, Undergraduate thesis with Craig Hodgson, University of Melbourne (2002)
,[10] Ford and Dirichlet domains for cyclic subgroups of $\mathrm{PSL}_2(\mathbf{C})$ acting on $\mathbf{H}^3_R$ and $\partial\mathbf{H}^3_R$, Conform. Geom. Dyn. 3 (1999) 116
, ,[11] Euclidean decompositions of noncompact hyperbolic manifolds, J. Differential Geom. 27 (1988) 67
, ,[12] Angled decompositions of arborescent link complements, Proc. Lond. Math. Soc. $(3)$ 98 (2009) 325
, ,[13] On an elementary proof of Rivin's characterization of convex ideal hyperbolic polyhedra by their dihedral angles, Geom. Dedicata 108 (2004) 111
,[14] Géométrie hyperbolique effective et triangulations idéales canoniques en dimension trois, PhD thesis, Université d’Orsay (2006)
,[15] On canonical triangulations of once-punctured torus bundles and two-bridge link complements, Geom. Topol. 10 (2006) 1239
,[16] Triangulated cores of punctured-torus groups, J. Differential Geom. 81 (2009) 91
,[17] Layered-triangulations of $3$–manifolds, Preprint (2006)
, ,[18] On cyclic groups of Möbius transformations, Math. Scand. 33 (1973)
,[19] On pairs of once-punctured tori, from: "Kleinian groups and hyperbolic 3-manifolds (Warwick, 2001)" (editors Y Komori, V Markovic, C Series), London Math. Soc. Lecture Note Ser. 299, Cambridge Univ. Press (2003) 183
,[20] The canonical decomposition of once-punctured torus bundles, Comment. Math. Helv. 78 (2003) 363
,[21] Dehn filling of the “magic” $3$–manifold, Comm. Anal. Geom. 14 (2006) 969
, ,[22] Arithmetic of hyperbolic manifolds, from: "Topology '90 (Columbus, OH, 1990)" (editors B Apanasov, W D Neumann, A W Reid, L Siebenmann), Ohio State Univ. Math. Res. Inst. Publ. 1, de Gruyter (1992) 273
, ,[23] Euclidean structures on simplicial surfaces and hyperbolic volume, Ann. of Math. $(2)$ 139 (1994) 553
,[24] Combinatorial optimization in geometry, Adv. in Appl. Math. 31 (2003) 242
,[25] Examples of canonical decompositions of hyperbolic link complements, Japan. J. Math. $($N.S.$)$ 21 (1995) 393
, ,[26] The geometry and topology of three-manifolds, Princeton Univ. Math. Dept. Lecture Notes (1979)
,[27] SnapPea: a software for the study of hyperbolic manifolds
,[28] Convex hulls and isometries of cusped hyperbolic $3$–manifolds, Topology Appl. 52 (1993) 127
,Cité par Sources :