Heegaard surfaces and the distance of amalgamation
Geometry & topology, Tome 14 (2010) no. 4, pp. 1871-1919.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let M1 and M2 be orientable irreducible 3–manifolds with connected boundary and suppose M1M2. Let M be a closed 3–manifold obtained by gluing M1 to M2 along the boundary. We show that if the gluing homeomorphism is sufficiently complicated, then M is not homeomorphic to S3 and all small-genus Heegaard splittings of M are standard in a certain sense. In particular, g(M) = g(M1) + g(M2) g(Mi), where g(M) denotes the Heegaard genus of M. This theorem is also true for certain manifolds with multiple boundary components.

DOI : 10.2140/gt.2010.14.1871
Keywords: Heegaard splitting, amalgamation, curve complex

Li, Tao 1

1 Department of Mathematics, Boston College, Chestnut Hill, MA 02467
@article{GT_2010_14_4_a0,
     author = {Li, Tao},
     title = {Heegaard surfaces and the distance of amalgamation},
     journal = {Geometry & topology},
     pages = {1871--1919},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2010},
     doi = {10.2140/gt.2010.14.1871},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.1871/}
}
TY  - JOUR
AU  - Li, Tao
TI  - Heegaard surfaces and the distance of amalgamation
JO  - Geometry & topology
PY  - 2010
SP  - 1871
EP  - 1919
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.1871/
DO  - 10.2140/gt.2010.14.1871
ID  - GT_2010_14_4_a0
ER  - 
%0 Journal Article
%A Li, Tao
%T Heegaard surfaces and the distance of amalgamation
%J Geometry & topology
%D 2010
%P 1871-1919
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.1871/
%R 10.2140/gt.2010.14.1871
%F GT_2010_14_4_a0
Li, Tao. Heegaard surfaces and the distance of amalgamation. Geometry & topology, Tome 14 (2010) no. 4, pp. 1871-1919. doi : 10.2140/gt.2010.14.1871. http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.1871/

[1] D Bachman, Barriers to topologically minimal surfaces

[2] D Bachman, S Schleimer, E Sedgwick, Sweepouts of amalgamated 3–manifolds, Algebr. Geom. Topol. 6 (2006) 171 | DOI

[3] A J Casson, C M Gordon, Reducing Heegaard splittings, Topology Appl. 27 (1987) 275 | DOI

[4] W Haken, Some results on surfaces in 3–manifolds, from: "Studies in Modern Topology", Math. Assoc. Amer. (1968) 39

[5] K Hartshorn, Heegaard splittings of Haken manifolds have bounded distance, Pacific J. Math. 204 (2002) 61 | DOI

[6] W J Harvey, Boundary structure of the modular group, from: "Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, NY, 1978)" (editors I Kra, B Maskit), Ann. of Math. Stud. 97, Princeton Univ. Press (1981) 245

[7] J Hempel, 3–manifolds as viewed from the curve complex, Topology 40 (2001) 631 | DOI

[8] W Jaco, Lectures on three-manifold topology, 43, Amer. Math. Soc. (1980)

[9] M Lackenby, The Heegaard genus of amalgamated 3–manifolds, Geom. Dedicata 109 (2004) 139 | DOI

[10] T Li, Rank and genus of amalgamated 3–manifolds, in preparation

[11] T Li, Immersed essential surfaces in hyperbolic 3–manifolds, Comm. Anal. Geom. 10 (2002) 275

[12] T Li, Images of the disk complex, Preprint (2005)

[13] T Li, Heegaard surfaces and measured laminations. I. The Waldhausen conjecture, Invent. Math. 167 (2007) 135 | DOI

[14] T Li, On the Heegaard splittings of amalgamated 3–manifolds, from: "Workshop on Heegaard Splittings" (editors C Gordon, Y Moriah), Geom. Topol. Monogr. 12, Geom. Topol. Publ. (2007) 157

[15] T Li, Saddle tangencies and the distance of Heegaard splittings, Algebr. Geom. Topol. 7 (2007) 1119 | DOI

[16] T Li, Thin position and planar surfaces for graphs in the 3–sphere, Proc. Amer. Math. Soc. 138 (2010) 333

[17] H A Masur, Y N Minsky, Geometry of the complex of curves. I. Hyperbolicity, Invent. Math. 138 (1999) 103 | DOI

[18] Y Moriah, H Rubinstein, Heegaard structures of negatively curved 3–manifolds, Comm. Anal. Geom. 5 (1997) 375

[19] Y Moriah, E Sedgwick, The Heegaard structure of Dehn filled manifolds, from: "Workshop on Heegaard Splittings" (editors C Gordon, Y Moriah), Geom. Topol. Monogr. 12, Geom. Topol. Publ. (2007) 233

[20] Y Rieck, E Sedgwick, Persistence of Heegaard structures under Dehn filling, Topology Appl. 109 (2001) 41 | DOI

[21] M Scharlemann, Local detection of strongly irreducible Heegaard splittings, Topology Appl. 90 (1998) 135 | DOI

[22] M Scharlemann, Heegaard splittings of compact 3–manifolds, from: "Handbook of geometric topology" (editors R J Daverman, R B Sher), North-Holland (2002) 921

[23] M Scharlemann, Proximity in the curve complex: boundary reduction and bicompressible surfaces, Pacific J. Math. 228 (2006) 325 | DOI

[24] M Scharlemann, A Thompson, Heegaard splittings of (surface) × I are standard, Math. Ann. 295 (1993) 549 | DOI

[25] M Scharlemann, A Thompson, Thin position for 3–manifolds, from: "Geometric topology (Haifa, 1992)" (editors C Gordon, Y Moriah, B Wajnryb), Contemp. Math. 164, Amer. Math. Soc. (1994) 231

[26] M Scharlemann, M Tomova, Alternate Heegaard genus bounds distance, Geom. Topol. 10 (2006) 593 | DOI

[27] J Schultens, The classification of Heegaard splittings for (compact orientable surface) ×S1, Proc. London Math. Soc. 67 (1993) 425 | DOI

[28] J Souto, The Heegaard genus and distances in the curve complex, Preprint (2003)

Cité par Sources :