Symplectic topology of Mañé’s critical values
Geometry & topology, Tome 14 (2010) no. 3, pp. 1765-1870.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We study the dynamics and symplectic topology of energy hypersurfaces of mechanical Hamiltonians on twisted cotangent bundles. We pay particular attention to periodic orbits, displaceability, stability and the contact type property, and the changes that occur at the Mañé critical value c. Our main tool is Rabinowitz Floer homology. We show that it is defined for hypersurfaces that are either stable tame or virtually contact, and that it is invariant under homotopies in these classes. If the configuration space admits a metric of negative curvature, then Rabinowitz Floer homology does not vanish for energy levels k > c and, as a consequence, these level sets are not displaceable. We provide a large class of examples in which Rabinowitz Floer homology is nonzero for energy levels k > c but vanishes for k < c, so levels above and below c cannot be connected by a stable tame homotopy. Moreover, we show that for strictly 14–pinched negative curvature and nonexact magnetic fields all sufficiently high energy levels are nonstable, provided that the dimension of the base manifold is even and different from two.

DOI : 10.2140/gt.2010.14.1765
Keywords: Mañé' critical value, magnetic field, Rabinowitz Floer homology, stable Hamiltonian structure

Cieliebak, Kai 1 ; Frauenfelder, Urs 2 ; Paternain, Gabriel P 3

1 Mathematisches Institut, Ludwig-Maximilians-Universität München, Theresienstr 39, 80333 München, Germany
2 Department of Mathematics and Research Institute of Mathematics, Seoul National University, San56-1 Shinrim-dong Kwanak-gu, Seoul 151-747, Korea
3 Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WB, United Kingdom
@article{GT_2010_14_3_a8,
     author = {Cieliebak, Kai and Frauenfelder, Urs and Paternain, Gabriel P},
     title = {Symplectic topology of {Ma\~n\'e{\textquoteright}s} critical values},
     journal = {Geometry & topology},
     pages = {1765--1870},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2010},
     doi = {10.2140/gt.2010.14.1765},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.1765/}
}
TY  - JOUR
AU  - Cieliebak, Kai
AU  - Frauenfelder, Urs
AU  - Paternain, Gabriel P
TI  - Symplectic topology of Mañé’s critical values
JO  - Geometry & topology
PY  - 2010
SP  - 1765
EP  - 1870
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.1765/
DO  - 10.2140/gt.2010.14.1765
ID  - GT_2010_14_3_a8
ER  - 
%0 Journal Article
%A Cieliebak, Kai
%A Frauenfelder, Urs
%A Paternain, Gabriel P
%T Symplectic topology of Mañé’s critical values
%J Geometry & topology
%D 2010
%P 1765-1870
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.1765/
%R 10.2140/gt.2010.14.1765
%F GT_2010_14_3_a8
Cieliebak, Kai; Frauenfelder, Urs; Paternain, Gabriel P. Symplectic topology of Mañé’s critical values. Geometry & topology, Tome 14 (2010) no. 3, pp. 1765-1870. doi : 10.2140/gt.2010.14.1765. http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.1765/

[1] A Abbondandolo, M Schwarz, Estimates and computations in Rabinowitz–Floer homology, J. Topol. Anal. 1 (2009) 307

[2] R Abraham, J E Marsden, Foundations of mechanics, Benjamin/Cummings (1978)

[3] D V Anosov, J G Sinaĭ, Some smooth ergodic systems, Uspehi Mat. Nauk 22 (1967) 107

[4] V I Arnol’D, On some problems in symplectic topology, from: "Topology and geometry—Rohlin Seminar" (editor O Y Viro), Lecture Notes in Math. 1346, Springer (1988) 1

[5] V I Arnol’D, Mathematical methods of classical mechanics, Graduate Texts in Math. 60, Springer (1989)

[6] M Audin, F Lalonde, L Polterovich, Symplectic rigidity: Lagrangian submanifolds, from: "Holomorphic curves in symplectic geometry" (editors M Audin, J Lafontaine), Progr. Math. 117, Birkhäuser (1994) 271

[7] P Bernard, Symplectic aspects of Mather theory, Duke Math. J. 136 (2007) 401

[8] K Burns, G P Paternain, Anosov magnetic flows, critical values and topological entropy, Nonlinearity 15 (2002) 281

[9] L T Butler, An optical Hamiltonian and obstructions to integrability, Nonlinearity 19 (2006) 2123

[10] L T Butler, G P Paternain, Magnetic flows on Sol-manifolds: dynamical and symplectic aspects, Comm. Math. Phys. 284 (2008) 187

[11] C Camacho, A Lins Neto, Geometric theory of foliations, Birkhäuser (1985)

[12] K Cieliebak, U A Frauenfelder, Morse homology on noncompact manifolds

[13] K Cieliebak, U A Frauenfelder, A Floer homology for exact contact embeddings, Pacific J. Math. 239 (2009) 251

[14] K Cieliebak, U A Frauenfelder, A Oancea, Rabinowitz Floer homology and symplectic homology, to appear in Ann. Sci. École Norm. Sup.

[15] K Cieliebak, U A Frauenfelder, G P Paternain, Stability is not open

[16] K Cieliebak, K Mohnke, Compactness for punctured holomorphic curves, J. Symplectic Geom. 3 (2005) 589

[17] K Cieliebak, E Volkov, First steps in stable Hamiltonian topology

[18] G Contreras, The Palais–Smale condition on contact type energy levels for convex Lagrangian systems, Calc. Var. Partial Differential Equations 27 (2006) 321

[19] G Contreras, J Delgado, R Iturriaga, Lagrangian flows: the dynamics of globally minimizing orbits. II, Bol. Soc. Brasil. Mat. $($N.S.$)$ 28 (1997) 155

[20] G Contreras, R Iturriaga, G P Paternain, M Paternain, Lagrangian graphs, minimizing measures and Mañé's critical values, Geom. Funct. Anal. 8 (1998) 788

[21] G Contreras, L Macarini, G P Paternain, Periodic orbits for exact magnetic flows on surfaces, Int. Math. Res. Not. (2004) 361

[22] N S Dairbekov, G P Paternain, On the cohomological equation of magnetic flows, Mat. Contemp. 34 (2008) 155

[23] Y Eliashberg, A Givental, H Hofer, Introduction to symplectic field theory, from: "GAFA 2000 (Tel Aviv, 1999)" (editors N Alon, J Bourgain, A Connes, M Gromov, V Milman), Geom. Funct. Anal. Special Volume, Part II (2000) 560

[24] A Fathi, E Maderna, Weak KAM theorem on non compact manifolds, Nonlinear Differential Equations Appl. 14 (2007) 1

[25] R Feres, Geodesic flows on manifolds of negative curvature with smooth horospheric foliations, Ergodic Theory Dynam. Systems 11 (1991) 653

[26] R Feres, A Katok, Invariant tensor fields of dynamical systems with pinched Lyapunov exponents and rigidity of geodesic flows, Ergodic Theory Dynam. Systems 9 (1989) 427

[27] P Foulon, Feuilletages des sphères et dynamiques Nord-Sud, C. R. Acad. Sci. Paris Sér. I Math. 318 (1994) 1041

[28] H Furstenberg, The unique ergodicity of the horocycle flow, from: "Recent advances in topological dynamics (Proc. Conf., Yale Univ., New Haven, Conn., 1972; in honor of Gustav Arnold Hedlund)" (editor A Beck), Lecture Notes in Math. 318, Springer (1973) 95

[29] V L Ginzburg, On closed trajectories of a charge in a magnetic field. An application of symplectic geometry, from: "Contact and symplectic geometry (Cambridge, 1994)" (editor C B Thomas), Publ. Newton Inst. 8, Cambridge Univ. Press (1996) 131

[30] V L Ginzburg, B Z Gürel, Periodic orbits of twisted geodesic flows and the Weinstein–Moser theorem, Comment. Math. Helv. 84 (2009) 865

[31] V L Ginzburg, E Kerman, Periodic orbits in magnetic fields in dimensions greater than two, from: "Geometry and topology in dynamics (Winston–Salem, NC, 1998/San Antonio, TX, 1999)" (editors M Barge, K Kuperberg), Contemp. Math. 246, Amer. Math. Soc. (1999) 113

[32] M Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307

[33] M Gromov, Kähler hyperbolicity and $L_2$-Hodge theory, J. Differential Geom. 33 (1991) 263

[34] U Hamenstädt, Invariant two-forms for geodesic flows, Math. Ann. 301 (1995) 677

[35] B Hasselblatt, Horospheric foliations and relative pinching, J. Differential Geom. 39 (1994) 57

[36] B Hasselblatt, Regularity of the Anosov splitting and of horospheric foliations, Ergodic Theory Dynam. Systems 14 (1994) 645

[37] M W Hirsch, C C Pugh, M Shub, Invariant manifolds, Lecture Notes in Math. 583, Springer (1977)

[38] H Hofer, K Wysocki, E Zehnder, A general Fredholm theory. I. A splicing-based differential geometry, J. Eur. Math. Soc. $($JEMS$)$ 9 (2007) 841

[39] H Hofer, K Wysocki, E Zehnder, A general Fredholm theory. II. Implicit function theorems, Geom. Funct. Anal. 19 (2009) 206

[40] H Hofer, E Zehnder, Symplectic invariants and Hamiltonian dynamics, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Verlag (1994)

[41] M Kanai, Differential-geometric studies on dynamics of geodesic and frame flows, Japan. J. Math. $($N.S.$)$ 19 (1993) 1

[42] A Katok, B Hasselblatt, Introduction to the modern theory of dynamical systems, Ency. of Math. and its Appl. 54, Cambridge Univ. Press (1995)

[43] W Klingenberg, Riemannian geometry, de Gruyter Studies in Math. 1, de Gruyter (1982)

[44] G Knieper, Hyperbolic dynamics and Riemannian geometry, from: "Handbook of dynamical systems, Vol. 1A" (editors B Hasselblatt, A Katok), North-Holland (2002) 453

[45] F Laudenbach, J C Sikorav, Hamiltonian disjunction and limits of Lagrangian submanifolds, Internat. Math. Res. Notices (1994)

[46] G Lu, The Weinstein conjecture on some symplectic manifolds containing the holomorphic spheres, Kyushu J. Math. 52 (1998) 331

[47] S Mac Lane, Categories for the working mathematician, Graduate Texts in Math. 5, Springer (1998)

[48] L Macarini, G P Paternain, On the stability of Mañé critical hypersurfaces, to appear in Calc. Var. Partial Diff. Equations

[49] R Mañé, Lagrangian flows: the dynamics of globally minimizing orbits, Bol. Soc. Brasil. Mat. $($N.S.$)$ 28 (1997) 141

[50] J N Mather, Action minimizing invariant measures for positive definite Lagrangian systems, Math. Z. 207 (1991) 169

[51] D Mcduff, Applications of convex integration to symplectic and contact geometry, Ann. Inst. Fourier (Grenoble) 37 (1987) 107

[52] D Mcduff, D Salamon, Introduction to symplectic topology, Oxford Math. Monogr., The Clarendon Press, Oxford Univ. Press (1998)

[53] D Mcduff, D Salamon, $J$–holomorphic curves and symplectic topology, Amer. Math. Soc. Coll. Publ. 52, Amer. Math. Soc. (2004)

[54] W Merry, Closed orbits of a charge in a weakly exact magnetic field, to appear in Pacific J. Math.

[55] W Merry, On the Rabinowitz Floer homology of twisted cotangent bundles

[56] W Merry, G P Paternain, Stability of Anosov Hamiltonian structures

[57] K Nomizu, On the cohomology of compact homogeneous spaces of nilpotent Lie groups, Ann. of Math. $(2)$ 59 (1954) 531

[58] S P Novikov, The Hamiltonian formalism and a multivalued analogue of Morse theory, Uspekhi Mat. Nauk 37 (1982) 3, 248

[59] W Parry, Synchronisation of canonical measures for hyperbolic attractors, Comm. Math. Phys. 106 (1986) 267

[60] G P Paternain, Magnetic rigidity of horocycle flows, Pacific J. Math. 225 (2006) 301

[61] G P Paternain, M Paternain, Critical values of autonomous Lagrangian systems, Comment. Math. Helv. 72 (1997) 481

[62] G P Paternain, L Polterovich, K F Siburg, Boundary rigidity for Lagrangian submanifolds, non-removable intersections, and Aubry–Mather theory, Mosc. Math. J. 3 (2003) 593, 745

[63] L Polterovich, An obstacle to non-Lagrangian intersections, from: "The Floer memorial volume" (editors A Weinstein, E Zehnder), Progr. Math. 133, Birkhäuser (1995) 575

[64] F Schlenk, Applications of Hofer's geometry to Hamiltonian dynamics, Comment. Math. Helv. 81 (2006) 105

[65] P Scott, The geometries of $3$–manifolds, Bull. London Math. Soc. 15 (1983) 401

[66] D Sullivan, A foliation of geodesics is characterized by having no “tangent homologies”, J. Pure Appl. Algebra 13 (1978) 101

[67] C Viterbo, Symplectic homogeneization

[68] C Viterbo, Functors and computations in Floer homology with applications. I, Geom. Funct. Anal. 9 (1999) 985

[69] A W Wadsley, Geodesic foliations by circles, J. Differential Geometry 10 (1975) 541

[70] A Weinstein, On the hypotheses of Rabinowitz' periodic orbit theorems, J. Differential Equations 33 (1979) 353

Cité par Sources :