Floer homology of cotangent bundles and the loop product
Geometry & topology, Tome 14 (2010) no. 3, pp. 1569-1722.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove that the pair-of-pants product on the Floer homology of the cotangent bundle of a compact manifold M corresponds to the Chas–Sullivan loop product on the singular homology of the loop space of M. We also prove related results concerning the Floer homological interpretation of the Pontrjagin product and of the Serre fibration. The techniques include a Fredholm theory for Cauchy–Riemann operators with jumping Lagrangian boundary conditions of conormal type, and a new cobordism argument replacing the standard gluing technique.

DOI : 10.2140/gt.2010.14.1569
Keywords: Floer homology, string topology, cotangent bundles, loop product

Abbondandolo, Alberto 1 ; Schwarz, Matthias 2

1 Dipartimento di Matematica, Universita di Pisa, Largo Bruno Pontecorvo 5, 56127 Pisa, Italy
2 Universität Leipzig, Mathematisches Institut, Postfach 10 09 20, D-04009 Leipzig, Germany
@article{GT_2010_14_3_a6,
     author = {Abbondandolo, Alberto and Schwarz, Matthias},
     title = {Floer homology of cotangent bundles and the loop product},
     journal = {Geometry & topology},
     pages = {1569--1722},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2010},
     doi = {10.2140/gt.2010.14.1569},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.1569/}
}
TY  - JOUR
AU  - Abbondandolo, Alberto
AU  - Schwarz, Matthias
TI  - Floer homology of cotangent bundles and the loop product
JO  - Geometry & topology
PY  - 2010
SP  - 1569
EP  - 1722
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.1569/
DO  - 10.2140/gt.2010.14.1569
ID  - GT_2010_14_3_a6
ER  - 
%0 Journal Article
%A Abbondandolo, Alberto
%A Schwarz, Matthias
%T Floer homology of cotangent bundles and the loop product
%J Geometry & topology
%D 2010
%P 1569-1722
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.1569/
%R 10.2140/gt.2010.14.1569
%F GT_2010_14_3_a6
Abbondandolo, Alberto; Schwarz, Matthias. Floer homology of cotangent bundles and the loop product. Geometry & topology, Tome 14 (2010) no. 3, pp. 1569-1722. doi : 10.2140/gt.2010.14.1569. http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.1569/

[1] A Abbondandolo, P Majer, Lectures on the Morse complex for infinite-dimensional manifolds, from: "Morse theoretic methods in nonlinear analysis and in symplectic topology" (editors P Biran, O Cornea, F Lalonde), NATO Sci. Ser. II Math. Phys. Chem. 217, Springer (2006) 1

[2] A Abbondandolo, A Portaluri, M Schwarz, The homology of path spaces and Floer homology with conormal boundary conditions, J. Fixed Point Theory Appl. 4 (2008) 263

[3] A Abbondandolo, M Schwarz, Notes on Floer homology and loop space homology, from: "Morse theoretic methods in nonlinear analysis and in symplectic topology" (editors P Biran, O Cornea, F Lalonde), NATO Sci. Ser. II Math. Phys. Chem. 217, Springer (2006) 75

[4] A Abbondandolo, M Schwarz, On the Floer homology of cotangent bundles, Comm. Pure Appl. Math. 59 (2006) 254

[5] A Abbondandolo, M Schwarz, A smooth pseudo-gradient for the Lagrangian action functional, Adv. Nonlinear Stud. 9 (2009) 597

[6] N A Baas, R L Cohen, A Ramírez, The topology of the category of open and closed strings, from: "Recent developments in algebraic topology" (editors A Ádem, J González, G Pastor), Contemp. Math. 407, Amer. Math. Soc. (2006) 11

[7] M Betz, R L Cohen, Graph moduli spaces and cohomology operations, Turkish J. Math. 18 (1994) 23

[8] K C Chang, Infinite-dimensional Morse theory and multiple solution problems, Progress in Nonlinear Differential Equations and their Applications 6, Birkhäuser (1993)

[9] M Chas, D Sullivan, String topology

[10] M Chas, D Sullivan, Closed string operators in topology leading to Lie bialgebras and higher string algebra, from: "The legacy of Niels Henrik Abel", Springer (2004) 771

[11] K Cieliebak, T Ekholm, J Latschev, Compactness for holomorphic curves with switching Lagrangian boundary conditions, to appear in J. Symplectic Geom.

[12] K Cieliebak, J Latschev, The role of string topology in symplectic field theory, from: "New perspectives and challenges in symplectic field theory" (editors M Abreu, F Lalonde, L Polterovich), CRM Proc. Lecture Notes 49, Amer. Math. Soc. (2009) 113

[13] R L Cohen, Morse theory, graphs, and string topology, from: "Morse theoretic methods in nonlinear analysis and in symplectic topology" (editors P Biran, O Cornea, F Lalonde), NATO Sci. Ser. II Math. Phys. Chem. 217, Springer (2006) 149

[14] R L Cohen, K Hess, A A Voronov, String topology and cyclic homology, Advanced Courses in Math. CRM Barcelona, Birkhäuser Verlag (2006)

[15] R L Cohen, J D S Jones, A homotopy theoretic realization of string topology, Math. Ann. 324 (2002) 773

[16] R L Cohen, J D S Jones, J Yan, The loop homology algebra of spheres and projective spaces, from: "Categorical decomposition techniques in algebraic topology (Isle of Skye, 2001)" (editors G Arone, J Hubbuck, R Levi, M Weiss), Progr. Math. 215, Birkhäuser (2004) 77

[17] R L Cohen, J R Klein, D Sullivan, The homotopy invariance of the string topology loop product and string bracket, J. Topol. 1 (2008) 391

[18] R L Cohen, M Schwarz, A Morse theoretic description of string topology, from: "New perspectives and challenges in symplectic field theory" (editors M Abreu, F Lalonde, L Polterovich), CRM Proc. Lecture Notes 49, Amer. Math. Soc. (2009) 147

[19] T Tom Dieck, K H Kamps, D Puppe, Homotopietheorie, Lecture Notes in Math. 157, Springer (1970)

[20] J J Duistermaat, On the Morse index in variational calculus, Advances in Math. 21 (1976) 173

[21] A Floer, A relative Morse index for the symplectic action, Comm. Pure Appl. Math. 41 (1988) 393

[22] A Floer, The unregularized gradient flow of the symplectic action, Comm. Pure Appl. Math. 41 (1988) 775

[23] A Floer, Symplectic fixed points and holomorphic spheres, Comm. Math. Phys. 120 (1989) 575

[24] A Floer, Witten's complex and infinite-dimensional Morse theory, J. Differential Geom. 30 (1989) 207

[25] A Floer, H Hofer, Coherent orientations for periodic orbit problems in symplectic geometry, Math. Z. 212 (1993) 13

[26] A Floer, H Hofer, D Salamon, Transversality in elliptic Morse theory for the symplectic action, Duke Math. J. 80 (1995) 251

[27] K Fukaya, Morse homotopy, $A^\infty$–category, and Floer homologies, from: "Proceedings of GARC Workshop on Geometry and Topology `93" (editor H J Kim), Lecture Notes Ser. 18, Seoul Nat. Univ. (1993) 1

[28] K Fukaya, Morse homotopy and its quantization, from: "Geometric topology (Athens, GA, 1993)" (editor W H Kazez), AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc. (1997) 409

[29] K Fukaya, Y G Oh, H Ohta, K Ono, Lagrangian intersection Floer theory: anomaly and obstruction. Parts I–II, AMS/IP Studies in Adv. Math. 46, Amer. Math. Soc. (2009)

[30] K Fukaya, K Ono, Arnold conjecture and Gromov–Witten invariant, Topology 38 (1999) 933

[31] H Hofer, D A Salamon, Floer homology and Novikov rings, from: "The Floer memorial volume" (editors H Hofer, C H Taubes, A Weinstein, E Zehnder), Progr. Math. 133, Birkhäuser (1995) 483

[32] H Hofer, E Zehnder, Symplectic invariants and Hamiltonian dynamics, Birkhäuser Adv. Texts, Birkhäuser Verlag (1994)

[33] L Hörmander, Fourier integral operators. I, Acta Math. 127 (1971) 79

[34] S Ivashkovich, V Shevchishin, Reflection principle and $J$–complex curves with boundary on totally real immersions, Commun. Contemp. Math. 4 (2002) 65

[35] S Lang, Fundamentals of differential geometry, Graduate Texts in Math. 191, Springer (1999)

[36] G Liu, G Tian, Floer homology and Arnold conjecture, J. Differential Geom. 49 (1998) 1

[37] G Liu, G Tian, On the equivalence of multiplicative structures in Floer homology and quantum homology, Acta Math. Sin. $($Engl. Ser.$)$ 15 (1999) 53

[38] D Mcduff, D Salamon, $J$–holomorphic curves and symplectic topology, Amer. Math. Soc. Coll. Publ. 52, Amer. Math. Soc. (2004)

[39] S Piunikhin, D Salamon, M Schwarz, Symplectic Floer–Donaldson theory and quantum cohomology, from: "Contact and symplectic geometry (Cambridge, 1994)" (editor C B Thomas), Publ. Newton Inst. 8, Cambridge Univ. Press (1996) 171

[40] D Quillen, Determinants of Cauchy–Riemann operators on Riemann surfaces, Funktsional. Anal. i Prilozhen. 19 (1985) 37, 96

[41] A Ramírez, Open-closed string topology via fat graphs

[42] J Robbin, D Salamon, The Maslov index for paths, Topology 32 (1993) 827

[43] J Robbin, D Salamon, The spectral flow and the Maslov index, Bull. London Math. Soc. 27 (1995) 1

[44] D A Salamon, J Weber, Floer homology and the heat flow, Geom. Funct. Anal. 16 (2006) 1050

[45] M Schwarz, Morse homology, Progress in Math. 111, Birkhäuser Verlag (1993)

[46] M Schwarz, Cohomology operations from $S^1$–cobordisms in Floer homology, PhD thesis, Swiss Federal Inst. of Techn. Zürich (1995)

[47] P Seidel, A biased view of symplectic cohomology, from: "Current developments in mathematics, 2006" (editors D Jenison, B Mazur, T Mrowka, W Schmid, R Stanley, S T Yau), Int. Press (2008) 211

[48] S Smale, An infinite dimensional version of Sard's theorem, Amer. J. Math. 87 (1965) 861

[49] D Sullivan, Open and closed string field theory interpreted in classical algebraic topology, from: "Topology, geometry and quantum field theory" (editor U Tillmann), London Math. Soc. Lecture Note Ser. 308, Cambridge Univ. Press (2004) 344

[50] D Sullivan, String topology background and present state, from: "Current developments in mathematics, 2005" (editors D Jenison, B Mazur, T Mrowka, W Schmid, R Stanley, S T Yau), Int. Press (2007) 41

[51] C Viterbo, The cup-product on the Thom–Smale–Witten complex, and Floer cohomology, from: "The Floer memorial volume" (editors H Hofer, C H Taubes, A Weinstein, E Zehnder), Progr. Math. 133, Birkhäuser (1995) 609

[52] C Viterbo, Functors and computations in Floer homology with applications II, Preprint (2003)

[53] J Weber, Perturbed closed geodesics are periodic orbits: index and transversality, Math. Z. 241 (2002) 45

[54] J Weber, Three approaches towards Floer homology of cotangent bundles, J. Symplectic Geom. 3 (2005) 671

[55] K Wehrheim, C T Woodward, Floer cohomology and geometric composition of Lagrangian correspondences

[56] K Wehrheim, C T Woodward, Functoriality for Lagrangian correspondences in Floer theory, to appear in Quantum Topol.

[57] K Wehrheim, C T Woodward, Pseudoholomorphic quilts

[58] K Wehrheim, C T Woodward, Quilted Floer cohomology, Geom. Topol. 14 (2010) 833

Cité par Sources :