Three-dimensional Anosov flag manifolds
Geometry & topology, Tome 14 (2010) no. 1, pp. 153-191.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let Γ be a surface group of higher genus. Let ρ0: Γ PGL(V ) be a discrete faithful representation with image contained in the natural embedding of SL(2, ) in PGL(3, ) as a group preserving a point and a disjoint projective line in the projective plane. We prove that ρ0 is (G,Y )–Anosov (following the terminology of Labourie [Invent. Math. 165 (2006) 51-114]), where Y is the frame bundle. More generally, we prove that all the deformations ρ: Γ PGL(3, ) studied in our paper [Geom. Topol. 5 (2001) 227-266] are (G,Y )–Anosov. As a corollary, we obtain all the main results of this paper and extend them to any small deformation of ρ0, not necessarily preserving a point or a projective line in the projective space: in particular, there is a ρ(Γ)–invariant solid torus Ω in the flag variety. The quotient space ρ(Γ)Ω is a flag manifold, naturally equipped with two 1–dimensional transversely projective foliations arising from the projections of the flag variety on the projective plane and its dual; if ρ is strongly irreducible, these foliations are not minimal. More precisely, if one of these foliations is minimal, then it is topologically conjugate to the strong stable foliation of a double covering of a geodesic flow, and ρ preserves a point or a projective line in the projective plane. All these results hold for any (G,Y )–Anosov representation which is not quasi-Fuchsian, ie, does not preserve a strictly convex domain in the projective plane.

DOI : 10.2140/gt.2010.14.153
Keywords: flag manifold, Anosov representation

Barbot, Thierry 1

1 LANLG, EA 2151, Université d’Avignon, 33, rue Louis Pasteur, F-84 000 Avignon, France
@article{GT_2010_14_1_a3,
     author = {Barbot, Thierry},
     title = {Three-dimensional {Anosov} flag manifolds},
     journal = {Geometry & topology},
     pages = {153--191},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2010},
     doi = {10.2140/gt.2010.14.153},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.153/}
}
TY  - JOUR
AU  - Barbot, Thierry
TI  - Three-dimensional Anosov flag manifolds
JO  - Geometry & topology
PY  - 2010
SP  - 153
EP  - 191
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.153/
DO  - 10.2140/gt.2010.14.153
ID  - GT_2010_14_1_a3
ER  - 
%0 Journal Article
%A Barbot, Thierry
%T Three-dimensional Anosov flag manifolds
%J Geometry & topology
%D 2010
%P 153-191
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.153/
%R 10.2140/gt.2010.14.153
%F GT_2010_14_1_a3
Barbot, Thierry. Three-dimensional Anosov flag manifolds. Geometry & topology, Tome 14 (2010) no. 1, pp. 153-191. doi : 10.2140/gt.2010.14.153. http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.153/

[1] V Bangert, Minimal geodesics, Ergodic Theory Dynam. Systems 10 (1990) 263

[2] T Barbot, Flag structures on Seifert manifolds, Geom. Topol. 5 (2001) 227

[3] T Barbot, Plane affine geometry and Anosov flows, Ann. Sci. École Norm. Sup. $(4)$ 34 (2001) 871

[4] Y Benoist, Automorphismes des cônes convexes, Invent. Math. 141 (2000) 149

[5] R Bowen, B Marcus, Unique ergodicity for horocycle foliations, Israel J. Math. 26 (1977) 43

[6] M Brunella, Expansive flows on Seifert manifolds and on torus bundles, Bol. Soc. Brasil. Mat. $($N.S.$)$ 24 (1993) 89

[7] S Choi, W M Goldman, Convex real projective structures on closed surfaces are closed, Proc. Amer. Math. Soc. 118 (1993) 657

[8] A Fathi, F Laudenbach, V Poenaru, Editors, Travaux de Thurston sur les surfaces, Astérisque 66–67, Soc. Math. France (1979) 284

[9] É Ghys, Flots d'Anosov dont les feuilletages stables sont différentiables, Ann. Sci. École Norm. Sup. $(4)$ 20 (1987) 251

[10] V L Ginzburg, B Z Gürel, A $C^2$–smooth counterexample to the Hamiltonian Seifert conjecture in $\mathbb R^4$, Ann. of Math. $(2)$ 158 (2003) 953

[11] W M Goldman, Geometric structures on manifolds and varieties of representations, from: "Geometry of group representations (Boulder, CO, 1987)" (editors W M Goldman, A R Magid), Contemp. Math. 74, Amer. Math. Soc. (1988) 169

[12] O Guichard, Composantes de Hitchin et représentations hyperconvexes de groupes de surface, J. Differential Geom. 80 (2008) 391

[13] G Kuperberg, A volume-preserving counterexample to the Seifert conjecture, Comment. Math. Helv. 71 (1996) 70

[14] K Kuperberg, A smooth counterexample to the Seifert conjecture, Ann. of Math. $(2)$ 140 (1994) 723

[15] F Labourie, Anosov flows, surface groups and curves in projective space, Invent. Math. 165 (2006) 51

[16] F Salein, Variétés anti-de Sitter de dimension 3 possédant un champ de Killing non trivial, C. R. Acad. Sci. Paris Sér. I Math. 324 (1997) 525

[17] R Schwartz, Pappus' theorem and the modular group, Inst. Hautes Études Sci. Publ. Math. (1993) 187

[18] W P Thurston, Three-dimensional geometry and topology. Vol. 1, Princeton Math. Ser. 35, Princeton Univ. Press (1997)

[19] F Waldhausen, On irreducible $3$–manifolds which are sufficiently large, Ann. of Math. $(2)$ 87 (1968) 56

Cité par Sources :