Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let be a surface group of higher genus. Let be a discrete faithful representation with image contained in the natural embedding of in as a group preserving a point and a disjoint projective line in the projective plane. We prove that is –Anosov (following the terminology of Labourie [Invent. Math. 165 (2006) 51-114]), where is the frame bundle. More generally, we prove that all the deformations studied in our paper [Geom. Topol. 5 (2001) 227-266] are –Anosov. As a corollary, we obtain all the main results of this paper and extend them to any small deformation of , not necessarily preserving a point or a projective line in the projective space: in particular, there is a –invariant solid torus in the flag variety. The quotient space is a flag manifold, naturally equipped with two –dimensional transversely projective foliations arising from the projections of the flag variety on the projective plane and its dual; if is strongly irreducible, these foliations are not minimal. More precisely, if one of these foliations is minimal, then it is topologically conjugate to the strong stable foliation of a double covering of a geodesic flow, and preserves a point or a projective line in the projective plane. All these results hold for any –Anosov representation which is not quasi-Fuchsian, ie, does not preserve a strictly convex domain in the projective plane.
Barbot, Thierry 1
@article{GT_2010_14_1_a3, author = {Barbot, Thierry}, title = {Three-dimensional {Anosov} flag manifolds}, journal = {Geometry & topology}, pages = {153--191}, publisher = {mathdoc}, volume = {14}, number = {1}, year = {2010}, doi = {10.2140/gt.2010.14.153}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.153/} }
Barbot, Thierry. Three-dimensional Anosov flag manifolds. Geometry & topology, Tome 14 (2010) no. 1, pp. 153-191. doi : 10.2140/gt.2010.14.153. http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.153/
[1] Minimal geodesics, Ergodic Theory Dynam. Systems 10 (1990) 263
,[2] Flag structures on Seifert manifolds, Geom. Topol. 5 (2001) 227
,[3] Plane affine geometry and Anosov flows, Ann. Sci. École Norm. Sup. $(4)$ 34 (2001) 871
,[4] Automorphismes des cônes convexes, Invent. Math. 141 (2000) 149
,[5] Unique ergodicity for horocycle foliations, Israel J. Math. 26 (1977) 43
, ,[6] Expansive flows on Seifert manifolds and on torus bundles, Bol. Soc. Brasil. Mat. $($N.S.$)$ 24 (1993) 89
,[7] Convex real projective structures on closed surfaces are closed, Proc. Amer. Math. Soc. 118 (1993) 657
, ,[8] Travaux de Thurston sur les surfaces, Astérisque 66–67, Soc. Math. France (1979) 284
, , , ,[9] Flots d'Anosov dont les feuilletages stables sont différentiables, Ann. Sci. École Norm. Sup. $(4)$ 20 (1987) 251
,[10] A $C^2$–smooth counterexample to the Hamiltonian Seifert conjecture in $\mathbb R^4$, Ann. of Math. $(2)$ 158 (2003) 953
, ,[11] Geometric structures on manifolds and varieties of representations, from: "Geometry of group representations (Boulder, CO, 1987)" (editors W M Goldman, A R Magid), Contemp. Math. 74, Amer. Math. Soc. (1988) 169
,[12] Composantes de Hitchin et représentations hyperconvexes de groupes de surface, J. Differential Geom. 80 (2008) 391
,[13] A volume-preserving counterexample to the Seifert conjecture, Comment. Math. Helv. 71 (1996) 70
,[14] A smooth counterexample to the Seifert conjecture, Ann. of Math. $(2)$ 140 (1994) 723
,[15] Anosov flows, surface groups and curves in projective space, Invent. Math. 165 (2006) 51
,[16] Variétés anti-de Sitter de dimension 3 possédant un champ de Killing non trivial, C. R. Acad. Sci. Paris Sér. I Math. 324 (1997) 525
,[17] Pappus' theorem and the modular group, Inst. Hautes Études Sci. Publ. Math. (1993) 187
,[18] Three-dimensional geometry and topology. Vol. 1, Princeton Math. Ser. 35, Princeton Univ. Press (1997)
,[19] On irreducible $3$–manifolds which are sufficiently large, Ann. of Math. $(2)$ 87 (1968) 56
,Cité par Sources :