Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
The local Donaldson–Thomas theory of curves is solved by localization and degeneration methods. The results complete a triangle of equivalences relating Gromov–Witten theory, Donaldson–Thomas theory, and the quantum cohomology of the Hilbert scheme of points of the plane.
Okounkov, A 1 ; Pandharipande, R 1
@article{GT_2010_14_3_a5, author = {Okounkov, A and Pandharipande, R}, title = {The local {Donaldson{\textendash}Thomas} theory of curves}, journal = {Geometry & topology}, pages = {1503--1567}, publisher = {mathdoc}, volume = {14}, number = {3}, year = {2010}, doi = {10.2140/gt.2010.14.1503}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.1503/} }
TY - JOUR AU - Okounkov, A AU - Pandharipande, R TI - The local Donaldson–Thomas theory of curves JO - Geometry & topology PY - 2010 SP - 1503 EP - 1567 VL - 14 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.1503/ DO - 10.2140/gt.2010.14.1503 ID - GT_2010_14_3_a5 ER -
Okounkov, A; Pandharipande, R. The local Donaldson–Thomas theory of curves. Geometry & topology, Tome 14 (2010) no. 3, pp. 1503-1567. doi : 10.2140/gt.2010.14.1503. http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.1503/
[1] A residue formula for holomorphic vector-fields, J. Differential Geometry 1 (1967) 311
,[2] The crepant resolution conjecture, from: "Algebraic geometry – Seattle 2005. Part 1", Proc. Sympos. Pure Math. 80, Amer. Math. Soc. (2009) 23
, ,[3] Curves in Calabi–Yau threefolds and topological quantum field theory, Duke Math. J. 126 (2005) 369
, ,[4] The local Gromov–Witten theory of curves, J. Amer. Math. Soc. 21 (2008) 101
, ,[5] Gauge theory in higher dimensions, from: "The geometric universe (Oxford, 1996)", Oxford Univ. Press (1998) 31
, ,[6] Introduction to symplectic field theory, Geom. Funct. Anal. (2000) 560
, , ,[7] On the equivariant Gromov–Witten theory of $\mathbb{P}^2$–bundles over curves, Comm. Anal. Geom. 14 (2006) 633
,[8] Evidence for the Gromov–Witten/Donaldson–Thomas correspondence, Math. Res. Lett. 13 (2006) 623
, ,[9] Localization of virtual classes, Invent. Math. 135 (1999) 487
, ,[10] Instantons and affine algebras I: The Hilbert scheme and vertex operators, Math. Res. Lett. 3 (1996) 275
,[11] Notes on Macdonald polynomials and the geometry of Hilbert schemes, from: "Symmetric functions 2001: surveys of developments and perspectives", NATO Sci. Ser. II Math. Phys. Chem. 74, Kluwer Acad. Publ. (2002) 1
,[12] Relative Gromov–Witten invariants, Ann. of Math. $(2)$ 157 (2003) 45
, ,[13] Gromov–Witten invariants of varieties with holomorphic 2–forms
, ,[14] Chern classes of tautological sheaves on Hilbert schemes of points on surfaces, Invent. Math. 136 (1999) 157
,[15] Symmetric groups and the cup product on the cohomology of Hilbert schemes, Duke Math. J. 110 (2001) 345
, ,[16] Symplectic surgery and Gromov–Witten invariants of Calabi–Yau 3–folds, Invent. Math. 145 (2001) 151
, ,[17] A degeneration formula of GW-invariants, J. Differential Geom. 60 (2002) 199
,[18] private communication (2004)
,[19] Degeneration of Donaldson–Thomas invariants, preprint (2009)
, ,[20] Vertex algebras and the cohomology ring structure of Hilbert schemes of points on surfaces, Math. Ann. 324 (2002) 105
, , ,[21] A proof of a conjecture of Mariño–Vafa on Hodge integrals
, , ,[22] Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press (1995)
,[23] Framed knots at large $N$
, ,[24] Gromov–Witten theory and Donaldson–Thomas theory I, Compos. Math. 142 (2006) 1263
, , , ,[25] Gromov–Witten theory and Donaldson–Thomas theory II, Compos. Math. 142 (2006) 1286
, , , ,[26] A topological view of Gromov–Witten theory, Topology 45 (2006) 887
, ,[27] Curves on $K3$ surfaces and modular forms
, , ,[28] Lectures on Hilbert schemes of points on surfaces, University Lecture Series 18, American Mathematical Society (1999)
,[29] Hodge integrals and invariants of the unknot, Geom. Topol. 8 (2004) 675
, ,[30] Virasoro constraints for target curves, Invent. Math. 163 (2006) 47
, ,[31] Quantum cohomology of the Hilbert scheme of points in the plane, Invent. Math. 179 (2010) 523
, ,[32] Correlation function of Schur process with application to local geometry of a random 3–dimensional Young diagram, J. Amer. Math. Soc. 16 (2003) 581
, ,[33] Quantum Calabi–Yau and classical crystals
, , ,[34] A holomorphic Casson invariant for Calabi–Yau 3–folds, and bundles on $K3$ fibrations, J. Differential Geom. 54 (2000) 367
,[35] Sur l'anneau de cohomologie du schéma de Hilbert de $\mathbb{C}^2$, C. R. Acad. Sci. Paris Sér. I Math. 332 (2001) 7
,Cité par Sources :