Manifolds with small Heegaard Floer ranks
Geometry & topology, Tome 14 (2010) no. 3, pp. 1479-1501.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that the only irreducible three-manifold with positive first Betti number and Heegaard Floer homology of rank two is homeomorphic to zero-framed surgery on the trefoil. We classify links whose branched double cover gives rise to this manifold. Together with a spectral sequence from Khovanov homology to the Floer homology of the branched double cover, our results show that Khovanov homology detects the unknot if and only if it detects the two component unlink.

DOI : 10.2140/gt.2010.14.1479
Classification : 57M27, 57M25
Keywords: Heegaard Floer homology, Khovanov homology, two-component unlink, torus bundle

Hedden, Matthew 1 ; Ni, Yi 2

1 Department of Mathematics, Michigan State University, East Lansing, MI 48824
2 Department of Mathematics, Caltech, Pasadena, CA 91125
@article{GT_2010_14_3_a4,
     author = {Hedden, Matthew and Ni, Yi},
     title = {Manifolds with small {Heegaard} {Floer} ranks},
     journal = {Geometry & topology},
     pages = {1479--1501},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2010},
     doi = {10.2140/gt.2010.14.1479},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.1479/}
}
TY  - JOUR
AU  - Hedden, Matthew
AU  - Ni, Yi
TI  - Manifolds with small Heegaard Floer ranks
JO  - Geometry & topology
PY  - 2010
SP  - 1479
EP  - 1501
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.1479/
DO  - 10.2140/gt.2010.14.1479
ID  - GT_2010_14_3_a4
ER  - 
%0 Journal Article
%A Hedden, Matthew
%A Ni, Yi
%T Manifolds with small Heegaard Floer ranks
%J Geometry & topology
%D 2010
%P 1479-1501
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.1479/
%R 10.2140/gt.2010.14.1479
%F GT_2010_14_3_a4
Hedden, Matthew; Ni, Yi. Manifolds with small Heegaard Floer ranks. Geometry & topology, Tome 14 (2010) no. 3, pp. 1479-1501. doi : 10.2140/gt.2010.14.1479. http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.1479/

[1] Y Ai, Y Ni, Two applications of twisted Floer homology, Int. Math. Res. Not. (2009) 3726

[2] Y Ai, T Peters, The twisted Floer homology of torus bundles, Algebr. Geom. Topol. 10 (2010) 679

[3] D Bar-Natan, On Khovanov's categorification of the Jones polynomial, Algebr. Geom. Topol. 2 (2002) 337

[4] M J Dunwoody, An equivariant sphere theorem, Bull. London Math. Soc. 17 (1985) 437

[5] E Eftekhary, Floer homology and existence of incompressible tori in homology spheres

[6] S Eliahou, L H Kauffman, M B Thistlethwaite, Infinite families of links with trivial Jones polynomial, Topology 42 (2003) 155

[7] M Freedman, J Hass, P Scott, Least area incompressible surfaces in $3$–manifolds, Invent. Math. 71 (1983) 609

[8] D Gabai, Foliations and the topology of $3$–manifolds, J. Differential Geom. 18 (1983) 445

[9] P Ghiggini, Knot Floer homology detects genus-one fibred knots, Amer. J. Math. 130 (2008) 1151

[10] J E Grigsby, S Wehrli, On the colored Jones polynomial, sutured floer homology, and knot floer homology, Adv. Math. 223 (2010) 2114

[11] A Hatcher, Algebraic topology, Cambridge Univ. Press (2002)

[12] M Hedden, Khovanov homology of the $2$–cable detects the unknot, Math. Res. Lett. 16 (2009) 991

[13] M Hedden, L Watson, Does Khovanov homology detect the unknot?

[14] U Hirsch, W D Neumann, On cyclic branched coverings of spheres, Math. Ann. 215 (1975) 289

[15] S Jabuka, T E Mark, Product formulae for Ozsváth–Szabó $4$–manifold invariants, Geom. Topol. 12 (2008) 1557

[16] M Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101 (2000) 359

[17] M Khovanov, Patterns in knot cohomology. I, Experiment. Math. 12 (2003) 365

[18] P Kronheimer, T Mrowka, Khovanov homology is an unknot-detector

[19] E S Lee, An endomorphism of the Khovanov invariant, Adv. Math. 197 (2005) 554

[20] W H Meeks Iii, P Scott, Finite group actions on $3$–manifolds, Invent. Math. 86 (1986) 287

[21] W H Meeks Iii, L Simon, S T Yau, Embedded minimal surfaces, exotic spheres, and manifolds with positive Ricci curvature, Ann. of Math. $(2)$ 116 (1982) 621

[22] Y Ni, Non-separating spheres and twisted Heegaard Floer homology

[23] Y Ni, Knot Floer homology detects fibred knots, Invent. Math. 170 (2007) 577

[24] Y Ni, Heegaard Floer homology and fibred $3$–manifolds, Amer. J. Math. 131 (2009) 1047

[25] P Ozsváth, Z Szabó, Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary, Adv. Math. 173 (2003) 179

[26] P Ozsváth, Z Szabó, Holomorphic disks and genus bounds, Geom. Topol. 8 (2004) 311

[27] P Ozsváth, Z Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004) 58

[28] P Ozsváth, Z Szabó, Holomorphic disks and three-manifold invariants: properties and applications, Ann. of Math. $(2)$ 159 (2004) 1159

[29] P Ozsváth, Z Szabó, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. $(2)$ 159 (2004) 1027

[30] P Ozsváth, Z Szabó, Heegaard Floer homology and contact structures, Duke Math. J. 129 (2005) 39

[31] P Ozsváth, Z Szabó, On Heegaard diagrams and holomorphic disks, from: "European Congress of Mathematics", Eur. Math. Soc. (2005) 769

[32] P Ozsváth, Z Szabó, On the Heegaard Floer homology of branched double-covers, Adv. Math. 194 (2005) 1

[33] P Ozsváth, Z Szabó, Holomorphic triangles and invariants for smooth four-manifolds, Adv. Math. 202 (2006) 326

[34] P Ozsváth, Z Szabó, An introduction to Heegaard Floer homology, from: "Floer homology, gauge theory, and low-dimensional topology" (editors D A Ellwood, P Ozsváth, A I Stipsicz, Z Szabó), Clay Math. Proc. 5, Amer. Math. Soc. (2006) 3

[35] P Ozsváth, Z Szabó, Holomorphic disks, link invariants and the multi-variable Alexander polynomial, Algebr. Geom. Topol. 8 (2008) 615

[36] P Ozsváth, Z Szabó, Link Floer homology and the Thurston norm, J. Amer. Math. Soc. 21 (2008) 671

[37] J Rasmussen, Khovanov homology and the slice genus, to appear in Invent. Math.

[38] A Shumakovitch, Torsion of the Khovanov homology

[39] E H Spanier, Algebraic topology, McGraw-Hill (1966)

[40] M Thistlethwaite, Links with trivial Jones polynomial, J. Knot Theory Ramifications 10 (2001) 641

[41] H Zieschang, Finite groups of mapping classes of surfaces, Lecture Notes in Math. 875, Springer (1981)

Cité par Sources :