From the hyperbolic 24–cell to the cuboctahedron
Geometry & topology, Tome 14 (2010) no. 3, pp. 1383-1477.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We describe a family of 4–dimensional hyperbolic orbifolds, constructed by deforming an infinite volume orbifold obtained from the ideal, hyperbolic 24–cell by removing two walls. This family provides an infinite number of infinitesimally rigid, infinite covolume, geometrically finite discrete subgroups of Isom(4). It also leads to finite covolume Coxeter groups which are the homomorphic image of the group of reflections in the hyperbolic 24–cell. The examples are constructed very explicitly, both from an algebraic and a geometric point of view. The method used can be viewed as a 4–dimensional, but infinite volume, analog of 3–dimensional hyperbolic Dehn filling.

DOI : 10.2140/gt.2010.14.1383
Keywords: hyperbolic manifold, discrete group

Kerckhoff, Steven P 1 ; Storm, Peter A 2

1 Department of Mathematics, Stanford University, Building 380, Sloan Hall, Stanford, CA 94305, USA
2 Jane Street Capital, LLC, 1 New York Plaza, 33rd Floor, New York, NY 10004, USA
@article{GT_2010_14_3_a3,
     author = {Kerckhoff, Steven P and Storm, Peter A},
     title = {From the hyperbolic 24{\textendash}cell to the cuboctahedron},
     journal = {Geometry & topology},
     pages = {1383--1477},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2010},
     doi = {10.2140/gt.2010.14.1383},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.1383/}
}
TY  - JOUR
AU  - Kerckhoff, Steven P
AU  - Storm, Peter A
TI  - From the hyperbolic 24–cell to the cuboctahedron
JO  - Geometry & topology
PY  - 2010
SP  - 1383
EP  - 1477
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.1383/
DO  - 10.2140/gt.2010.14.1383
ID  - GT_2010_14_3_a3
ER  - 
%0 Journal Article
%A Kerckhoff, Steven P
%A Storm, Peter A
%T From the hyperbolic 24–cell to the cuboctahedron
%J Geometry & topology
%D 2010
%P 1383-1477
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.1383/
%R 10.2140/gt.2010.14.1383
%F GT_2010_14_3_a3
Kerckhoff, Steven P; Storm, Peter A. From the hyperbolic 24–cell to the cuboctahedron. Geometry & topology, Tome 14 (2010) no. 3, pp. 1383-1477. doi : 10.2140/gt.2010.14.1383. http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.1383/

[1] J W Anderson, A brief survey of the deformation theory of Kleinian groups, from: "The Epstein birthday schrift" (editors I Rivin, C Rourke, C Series), Geom. Topol. Monogr. 1 (1998) 23

[2] E M Andreev, Convex polyhedra of finite volume in Lobačevskiĭspace, Mat. Sb. $($N.S.$)$ 83 (125) (1970) 256

[3] M Boileau, B Leeb, J Porti, Geometrization of $3$–dimensional orbifolds, Ann. of Math. $(2)$ 162 (2005) 195

[4] A Borel, Introduction aux groupes arithmétiques, Publ. Institut Math. Univ. Strasbourg, XV. Actualités Sci. Ind. 1341, Hermann (1969) 125

[5] B H Bowditch, Geometrical finiteness for hyperbolic groups, J. Funct. Anal. 113 (1993) 245

[6] R D Canary, On the Laplacian and the geometry of hyperbolic $3$–manifolds, J. Differential Geom. 36 (1992) 349

[7] D Cooper, C D Hodgson, S P Kerckhoff, Three-dimensional orbifolds and cone-manifolds, MSJ Memoirs 5, Math. Soc. Japan (2000)

[8] H S M Coxeter, Twelve geometric essays, Southern Illinois Univ. Press (1968)

[9] H S M Coxeter, Regular polytopes, Dover (1973)

[10] H S M Coxeter, Regular complex polytopes, Cambridge Univ. Press (1991)

[11] H Garland, M S Raghunathan, Fundamental domains for lattices in (R-)rank $1$ semisimple Lie groups, Ann. of Math. $(2)$ 92 (1970) 279

[12] P De La Harpe, An invitation to Coxeter groups, from: "Group theory from a geometrical viewpoint (Trieste, 1990)" (editors É Ghys, A Haefliger, A Verjovsky), World Sci. Publ. (1991) 193

[13] G D Mostow, Strong rigidity of locally symmetric spaces, Annals Math. Studies 78, Princeton Univ. Press (1973)

[14] G Prasad, Strong rigidity of $\mathbf{Q}$–rank $1$ lattices, Invent. Math. 21 (1973) 255

[15] M S Raghunathan, Discrete subgroups of Lie groups, Ergebnisse Math. ihrer Grenzgebiete 68, Springer (1972)

[16] A Selberg, On discontinuous groups in higher-dimensional symmetric spaces, from: "Contributions to function theory (Internat. Colloq. Function Theory, Bombay, 1960)", Tata Inst. (1960) 147

[17] W P Thurston, The geometry and topology of three-manifolds, Princeton Univ. Math. Dept. Lecture Notes (1979)

[18] E B Vinberg, On groups of unit elements of certain quadratic forms, Math. USSR Sbornik 16 (1972) 17

[19] E B Vinberg, O V Shvartsman, Discrete groups of motions of spaces of constant curvature, from: "Geometry, II", Ency. Math. Sci. 29, Springer (1993) 139

[20] H C Wang, Topics on totally discontinuous groups, from: "Symmetric spaces (Short Courses, Washington Univ., St. Louis, Mo., 1969–1970)" (editors W M Boothby, G L and Weiss), Pure and Appl. Math. 8, Dekker (1972) 459

[21] A Weil, On discrete subgroups of Lie groups. II, Ann. of Math. $(2)$ 75 (1962) 578

[22] A Weil, Remarks on the cohomology of groups, Ann. of Math. $(2)$ 80 (1964) 149

[23] D Witte Morris, Introduction to arithmetic groups, Preprint (2003)

Cité par Sources :