Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Associated to every complete affine 3–manifold with nonsolvable fundamental group is a noncompact hyperbolic surface . We classify these complete affine structures when is homeomorphic to a three-holed sphere. In particular, for every such complete hyperbolic surface , the deformation space identifies with two opposite octants in . Furthermore every admits a fundamental polyhedron bounded by crooked planes. Therefore is homeomorphic to an open solid handlebody of genus two. As an explicit application of this theory, we construct proper affine deformations of an arithmetic Fuchsian group inside .
Charette, Virginie 1 ; Drumm, Todd 2 ; Goldman, William 3
@article{GT_2010_14_3_a2, author = {Charette, Virginie and Drumm, Todd and Goldman, William}, title = {Affine deformations of a three-holed sphere}, journal = {Geometry & topology}, pages = {1355--1382}, publisher = {mathdoc}, volume = {14}, number = {3}, year = {2010}, doi = {10.2140/gt.2010.14.1355}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.1355/} }
TY - JOUR AU - Charette, Virginie AU - Drumm, Todd AU - Goldman, William TI - Affine deformations of a three-holed sphere JO - Geometry & topology PY - 2010 SP - 1355 EP - 1382 VL - 14 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.1355/ DO - 10.2140/gt.2010.14.1355 ID - GT_2010_14_3_a2 ER -
Charette, Virginie; Drumm, Todd; Goldman, William. Affine deformations of a three-holed sphere. Geometry & topology, Tome 14 (2010) no. 3, pp. 1355-1382. doi : 10.2140/gt.2010.14.1355. http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.1355/
[1] Properly discontinuous groups of affine transformations: a survey, Geom. Dedicata 87 (2001) 309
,[2] Tameness of hyperbolic 3–manifolds
,[3] A primer on the $(2+1)$ Einstein universe, from: "Recent developments in pseudo–Riemannian geometry", ESI Lect. Math. Phys., Eur. Math. Soc., Zürich (2008) 179
, , , , ,[4] Shrinkwrapping and the taming of hyperbolic 3–manifolds, J. Amer. Math. Soc. 19 (2006) 385
, ,[5] Affine deformations of ultraideal triangle groups, Geom. Dedicata 97 (2003) 17
,[6] The affine deformation space of a rank two Schottky group: a picture gallery, Geom. Dedicata 122 (2006) 173
,[7] Non-proper affine actions of the holonomy group of a punctured torus, Forum Math. 18 (2006) 121
,[8] Strong marked isospectrality of affine Lorentzian groups, J. Differential Geom. 66 (2004) 437
, ,[9] The Margulis invariant for parabolic transformations, Proc. Amer. Math. Soc. 133 (2005) 2439
, ,[10] Stretching three-holed spheres and the Margulis invariant, from: "In the tradition of Ahlfors–Bers V", Contemp. Math. 510, Amer. Math. Soc. (2010) 61
, , ,[11] Complete flat affine and Lorentzian manifolds, Geom. Dedicata 97 (2003) 187
, , , ,[12] Affine Schottky groups and crooked tilings, from: "Crystallographic groups and their generalizations (Kortrijk, 1999)", Contemp. Math. 262, Amer. Math. Soc. (2000) 69
, ,[13] Examples of nonproper affine actions, Michigan Math. J. 39 (1992) 435
,[14] Fundamental polyhedra for Margulis space-times, Topology 31 (1992) 677
,[15] Linear holonomy of Margulis space-times, J. Differential Geom. 38 (1993) 679
,[16] Complete flat Lorentz 3–manifolds with free fundamental group, Internat. J. Math. 1 (1990) 149
, ,[17] The geometry of crooked planes, Topology 38 (1999) 323
, ,[18] Isospectrality of flat Lorentz 3–manifolds, J. Differential Geom. 58 (2001) 457
, ,[19] Three-dimensional affine crystallographic groups, Adv. in Math. 47 (1983) 1
, ,[20] The Margulis invariant of isometric actions on Minkowski $(2+1)$–space, from: "Rigidity in dynamics and geometry (Cambridge, 2000)", Springer (2002) 187
,[21] Trace coordinates on Fricke spaces of some simple hyperbolic surfaces, from: "Handbook of Teichmüller theory Vol II", IRMA Lect. Math. Theor. Phys. 13, Eur. Math. Soc., Zürich (2009) 611
,[22] Proper affine actions and geodesic flows of hyperbolic surfaces, Ann. Math. 170 (2009) 1051
, , ,[23] Flat Lorentz 3–manifolds and cocompact Fuchsian groups, from: "Crystallographic groups and their generalizations (Kortrijk, 1999)", Contemp. Math. 262, Amer. Math. Soc. (2000) 135
, ,[24] Complete flat Lorentz 3–manifolds and laminations of hyperbolic surfaces, in preparation
, , ,[25] Pyramids of properness, PhD thesis, University of Maryland (2003)
,[26] Fuchsian affine actions of surface groups, J. Differential Geom. 59 (2001) 15
,[27] Free completely discontinuous groups of affine transformations, Dokl. Akad. Nauk SSSR 272 (1983) 785
,[28] Complete affine locally flat manifolds with a free fundamental group, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 134 (1984) 190
,[29] Lorentz spacetimes of constant curvature, Geom. Dedicata 126 (2007) 3
,[30] On fundamental groups of complete affinely flat manifolds, Advances in Math. 25 (1977) 178
,[31] Foundations of hyperbolic manifolds, Graduate Texts in Mathematics 149, Springer (2006)
,Cité par Sources :