The sutured Floer homology polytope
Geometry & topology, Tome 14 (2010) no. 3, pp. 1303-1354.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

In this paper, we extend the theory of sutured Floer homology developed by the author. We first prove an adjunction inequality and then define a polytope P(M,γ) in H2(M,M; ) that is spanned by the Spinc–structures which support nonzero Floer homology groups. If (M,γ) (M,γ) is a taut surface decomposition, then an affine map projects P(M,γ) onto a face of P(M,γ); moreover, if H2(M) = 0, then every face of P(M,γ) can be obtained in this way for some surface decomposition. We show that if (M,γ) is reduced, horizontally prime and H2(M) = 0, then P(M,γ) is maximal dimensional in H2(M,M; ). This implies that if rk(SFH(M,γ)) < 2k+1, then (M,γ) has depth at most 2k. Moreover, SFH acts as a complexity for balanced sutured manifolds. In particular, the rank of the top term of knot Floer homology bounds the topological complexity of the knot complement, in addition to simply detecting fibred knots.

DOI : 10.2140/gt.2010.14.1303
Keywords: sutured manifold, Heegaard Floer homology, knot theory

Juhász, András 1

1 Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WB, UK
@article{GT_2010_14_3_a1,
     author = {Juh\'asz, Andr\'as},
     title = {The sutured {Floer} homology polytope},
     journal = {Geometry & topology},
     pages = {1303--1354},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2010},
     doi = {10.2140/gt.2010.14.1303},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.1303/}
}
TY  - JOUR
AU  - Juhász, András
TI  - The sutured Floer homology polytope
JO  - Geometry & topology
PY  - 2010
SP  - 1303
EP  - 1354
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.1303/
DO  - 10.2140/gt.2010.14.1303
ID  - GT_2010_14_3_a1
ER  - 
%0 Journal Article
%A Juhász, András
%T The sutured Floer homology polytope
%J Geometry & topology
%D 2010
%P 1303-1354
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.1303/
%R 10.2140/gt.2010.14.1303
%F GT_2010_14_3_a1
Juhász, András. The sutured Floer homology polytope. Geometry & topology, Tome 14 (2010) no. 3, pp. 1303-1354. doi : 10.2140/gt.2010.14.1303. http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.1303/

[1] D Cooper, D D Long, Virtually Haken Dehn-filling, J. Differential Geom. 52 (1999) 173

[2] Y M Eliashberg, W P Thurston, Confoliations, Univ. Lecture Ser. 13, Amer. Math. Soc. (1998)

[3] S Friedl, A Juhász, J Rasmussen, The decategorification of sutured Floer homology

[4] D Gabai, Foliations and the topology of $3$–manifolds, J. Differential Geom. 18 (1983) 445

[5] D Gabai, Foliations and genera of links, Topology 23 (1984) 381

[6] D Gabai, Detecting fibred links in $S^3$, Comment. Math. Helv. 61 (1986) 519

[7] D Gabai, Foliations and the topology of $3$–manifolds. II, J. Differential Geom. 26 (1987) 461

[8] D Gabai, Foliations and the topology of $3$–manifolds. III, J. Differential Geom. 26 (1987) 479

[9] P Ghiggini, Knot Floer homology detects genus-one fibred knots, Amer. J. Math. 130 (2008) 1151

[10] M Hedden, A Juhász, S Sarkar, On sutured Floer homology and the equivalence of Seifert surfaces

[11] K Honda, W H Kazez, G Matić, Convex decomposition theory, Int. Math. Res. Not. (2002) 55

[12] W H Jaco, P B Shalen, Seifert fibered spaces in $3$–manifolds, Mem. Amer. Math. Soc. 21 (1979)

[13] A Juhász, Holomorphic discs and sutured manifolds, Algebr. Geom. Topol. 6 (2006) 1429

[14] A Juhász, Floer homology and surface decompositions, Geom. Topol. 12 (2008) 299

[15] Y Ni, Knot Floer homology detects fibred knots, Invent. Math. 170 (2007) 577

[16] Y Ni, Erratum: Knot Floer homology detects fibred knots \rm\codarefhttp://www.ams.org/mathscinet-getitem?mr=2357503[MR2357503], Invent. Math. 177 (2009) 235

[17] P Ozsváth, Z Szabó, Holomorphic disks and genus bounds, Geom. Topol. 8 (2004) 311

[18] P Ozsváth, Z Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004) 58

[19] P Ozsváth, Z Szabó, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. $(2)$ 159 (2004) 1027

[20] P Ozsváth, Z Szabó, On knot Floer homology and lens space surgeries, Topology 44 (2005) 1281

[21] P Ozsváth, Z Szabó, Holomorphic disks, link invariants and the multi-variable Alexander polynomial, Algebr. Geom. Topol. 8 (2008) 615

[22] P Ozsváth, Z Szabó, Link Floer homology and the Thurston norm, J. Amer. Math. Soc. 21 (2008) 671

[23] J A Rasmussen, Floer homology and knot complements, PhD Thesis, Harvard University, ProQuest LLC, Ann Arbor, MI (2003)

[24] M Scharlemann, Sutured manifolds and generalized Thurston norms, J. Differential Geom. 29 (1989) 557

[25] W P Thurston, A norm for the homology of $3$–manifolds, Mem. Amer. Math. Soc. 59 (1986) 99

Cité par Sources :