A Schottky decomposition theorem for complex projective structures
Geometry & topology, Tome 14 (2010) no. 1, pp. 117-151.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let S be a closed orientable surface of genus at least two, and let C be an arbitrary (complex) projective structure on S. We show that there is a decomposition of S into pairs of pants and cylinders such that the restriction of C to each component has an injective developing map and a discrete and faithful holonomy representation. This decomposition implies that every projective structure can be obtained by the construction of Gallo, Kapovich, and Marden. Along the way, we show that there is an admissible loop on (S,C), along which a grafting can be done.

DOI : 10.2140/gt.2010.14.117
Keywords: complex projective structure, bending map, measured lamination

Baba, Shinpei 1

1 Mathematisches Institut, Universität Bonn, 53115 Bonn, Germany
@article{GT_2010_14_1_a2,
     author = {Baba, Shinpei},
     title = {A {Schottky} decomposition theorem for complex projective structures},
     journal = {Geometry & topology},
     pages = {117--151},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2010},
     doi = {10.2140/gt.2010.14.117},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.117/}
}
TY  - JOUR
AU  - Baba, Shinpei
TI  - A Schottky decomposition theorem for complex projective structures
JO  - Geometry & topology
PY  - 2010
SP  - 117
EP  - 151
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.117/
DO  - 10.2140/gt.2010.14.117
ID  - GT_2010_14_1_a2
ER  - 
%0 Journal Article
%A Baba, Shinpei
%T A Schottky decomposition theorem for complex projective structures
%J Geometry & topology
%D 2010
%P 117-151
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.117/
%R 10.2140/gt.2010.14.117
%F GT_2010_14_1_a2
Baba, Shinpei. A Schottky decomposition theorem for complex projective structures. Geometry & topology, Tome 14 (2010) no. 1, pp. 117-151. doi : 10.2140/gt.2010.14.117. http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.117/

[1] K Bromberg, Projective structures with degenerate holonomy and the Bers density conjecture, Ann. of Math. $(2)$ 166 (2007) 77

[2] R D Canary, D B A Epstein, P L Green, Notes on notes of Thurston, from: "Fundamentals of hyperbolic geometry: selected expositions" (editors R D Canary, D B A Epstein, A Marden), London Math. Soc. Lecture Note Ser. 328, Cambridge Univ. Press (2006) 1

[3] A J Casson, S A Bleiler, Automorphisms of surfaces after Nielsen and Thurston, London Math. Soc. Student Texts 9, Cambridge Univ. Press (1988)

[4] S Choi, Convex decompositions of real projective surfaces. II. Admissible decompositions, J. Differential Geom. 40 (1994) 239

[5] D B A Epstein, A Marden, Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated surfaces, from: "Fundamentals of hyperbolic geometry: selected expositions" (editors R D Canary, D B A Epstein, A Marden), London Math. Soc. Lecture Note Ser. 328, Cambridge Univ. Press (2006) 117

[6] D B A Epstein, A Marden, V Markovic, Quasiconformal homeomorphisms and the convex hull boundary, Ann. of Math. $(2)$ 159 (2004) 305

[7] D Gallo, M Kapovich, A Marden, The monodromy groups of Schwarzian equations on closed Riemann surfaces, Ann. of Math. $(2)$ 151 (2000) 625

[8] É Ghys, P D L Harpe, editors, Sur les groupes hyperboliques d'après Mikhael Gromov, Progress in Math. 83, Birkhäuser (1990)

[9] W M Goldman, Discontinuous groups and the Euler class, PhD thesis, University of California, Berkeley (1980)

[10] W M Goldman, Projective structures with Fuchsian holonomy, J. Differential Geom. 25 (1987) 297

[11] M Gromov, Hyperbolic groups, from: "Essays in group theory" (editor S M Gersten), Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75

[12] D A Hejhal, Monodromy groups and linearly polymorphic functions, Acta Math. 135 (1975) 1

[13] J H Hubbard, The monodromy of projective structures, from: "Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference" (editors I Kra, B Maskit), Ann. of Math. Stud. 97, Princeton Univ. Press (1981) 257

[14] Y Kamishima, S P Tan, Deformation spaces on geometric structures, from: "Aspects of low-dimensional manifolds" (editors Y Matsumoto, S Morita), Adv. Stud. Pure Math. 20, Kinokuniya (1992) 263

[15] M Kapovich, On monodromy of complex projective structures, Invent. Math. 119 (1995) 243

[16] M Kapovich, Hyperbolic manifolds and discrete groups, Progress in Math. 183, Birkhäuser (2001)

[17] R S Kulkarni, U Pinkall, A canonical metric for Möbius structures and its applications, Math. Z. 216 (1994) 89

[18] J W Morgan, P B Shalen, Free actions of surface groups on $\mathbf{R}$–trees, Topology 30 (1991) 143

[19] J P Otal, The hyperbolization theorem for fibered $3$–manifolds, SMF/AMS Texts and Monographs 7, Amer. Math. Soc. (2001)

[20] R C Penner, J L Harer, Combinatorics of train tracks, Annals of Math. Studies 125, Princeton Univ. Press (1992)

[21] H Tanigawa, Grafting, harmonic maps and projective structures on surfaces, J. Differential Geom. 47 (1997) 399

[22] W P Thurston, Three-dimensional geometry and topology. Vol. 1, Princeton Math. Series 35, Princeton Univ. Press (1997)

Cité par Sources :