Topological Hochschild homology of Thom spectra and the free loop space
Geometry & topology, Tome 14 (2010) no. 2, pp. 1165-1242.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We describe the topological Hochschild homology of ring spectra that arise as Thom spectra for loop maps f : X BF, where BF denotes the classifying space for stable spherical fibrations. To do this, we consider symmetric monoidal models of the category of spaces over BF and corresponding strong symmetric monoidal Thom spectrum functors. Our main result identifies the topological Hochschild homology as the Thom spectrum of a certain stable bundle over the free loop space L(BX). This leads to explicit calculations of the topological Hochschild homology for a large class of ring spectra, including all of the classical cobordism spectra MO, MSO, MU, etc, and the Eilenberg–Mac Lane spectra Hp and H.

DOI : 10.2140/gt.2010.14.1165
Keywords: topological Hochschild homology, Thom spectra, loop space

Blumberg, Andrew J 1 ; Cohen, Ralph L 1 ; Schlichtkrull, Christian 2

1 Department of Mathematics, Stanford University, Stanford, CA 94305, United States
2 Department of Mathematics, University of Bergen, Johannes Brunsgate 12, 5008 Bergen, Norway
@article{GT_2010_14_2_a13,
     author = {Blumberg, Andrew J and Cohen, Ralph L and Schlichtkrull, Christian},
     title = {Topological {Hochschild} homology of {Thom} spectra and the free loop space},
     journal = {Geometry & topology},
     pages = {1165--1242},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2010},
     doi = {10.2140/gt.2010.14.1165},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.1165/}
}
TY  - JOUR
AU  - Blumberg, Andrew J
AU  - Cohen, Ralph L
AU  - Schlichtkrull, Christian
TI  - Topological Hochschild homology of Thom spectra and the free loop space
JO  - Geometry & topology
PY  - 2010
SP  - 1165
EP  - 1242
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.1165/
DO  - 10.2140/gt.2010.14.1165
ID  - GT_2010_14_2_a13
ER  - 
%0 Journal Article
%A Blumberg, Andrew J
%A Cohen, Ralph L
%A Schlichtkrull, Christian
%T Topological Hochschild homology of Thom spectra and the free loop space
%J Geometry & topology
%D 2010
%P 1165-1242
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.1165/
%R 10.2140/gt.2010.14.1165
%F GT_2010_14_2_a13
Blumberg, Andrew J; Cohen, Ralph L; Schlichtkrull, Christian. Topological Hochschild homology of Thom spectra and the free loop space. Geometry & topology, Tome 14 (2010) no. 2, pp. 1165-1242. doi : 10.2140/gt.2010.14.1165. http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.1165/

[1] M Ando, A J Blumberg, D Gepner, M J Hopkins, C Rezk, Units of ring spectra and Thom spectra

[2] A Baker, B Richter, Quasisymmetric functions from a topological point of view, Math. Scand. 103 (2008) 208

[3] M Basterra, André–Quillen cohomology of commutative $S$–algebras, J. Pure Appl. Algebra 144 (1999) 111

[4] M Basterra, M A Mandell, Homology and cohomology of $E_\infty$ ring spectra, Math. Z. 249 (2005) 903

[5] A J Blumberg, Topological Hochschild homology of Thom spectra which are ${E}_\infty$ ring spectra

[6] A J Blumberg, Progress towards the calculation of the $K$–theory of Thom spectra, PhD thesis, University of Chicago (2005)

[7] J M Boardman, R M Vogt, Homotopy-everything $H$–spaces, Bull. Amer. Math. Soc. 74 (1968) 1117

[8] M Bökstedt, The topological Hochschild homology of $\mathbb{Z}$ and $\mathbb{Z}/p$, Preprint (1985)

[9] A K Bousfield, E M Friedlander, Homotopy theory of $\Gamma $–spaces, spectra, and bisimplicial sets, from: "Geometric applications of homotopy theory (Proc. Conf., Evanston, Ill., 1977), II", Lecture Notes in Math. 658, Springer (1978) 80

[10] A K Bousfield, D M Kan, Homotopy limits, completions and localizations, Lecture Notes in Math. 304, Springer (1972)

[11] M Brun, Z Fiedorowicz, R M Vogt, On the multiplicative structure of topological Hochschild homology, Algebr. Geom. Topol. 7 (2007) 1633

[12] S Bullett, Permutations and braids in cobordism theory, Proc. London Math. Soc. $(3)$ 38 (1979) 517

[13] F R Cohen, Braid orientations and bundles with flat connections, Invent. Math. 46 (1978) 99

[14] F R Cohen, J P May, L R Taylor, $K(\mathbb{Z}, 0)$ and $K(\mathbb{Z}_2, 0)$ as Thom spectra, Illinois J. Math. 25 (1981) 99

[15] W G Dwyer, J Spaliński, Homotopy theories and model categories, from: "Handbook of algebraic topology" (editor I M James), North-Holland (1995) 73

[16] A D Elmendorf, I Kriz, M A Mandell, J P May, Rings, modules, and algebras in stable homotopy theory, Math. Surveys and Monogr. 47, Amer. Math. Soc. (1997)

[17] A D Elmendorf, I Kriz, M A Mandell, J P May, Errata for “Rings, modules, and algebras in stable homotopy theory” (2007)

[18] T G Goodwillie, Cyclic homology, derivations, and the free loopspace, Topology 24 (1985) 187

[19] P S Hirschhorn, Model categories and their localizations, Math. Surveys and Monogr. 99, Amer. Math. Soc. (2003)

[20] M Hovey, B Shipley, J Smith, Symmetric spectra, J. Amer. Math. Soc. 13 (2000) 149

[21] N Iwase, A continuous localization and completion, Trans. Amer. Math. Soc. 320 (1990) 77

[22] I Kriz, J P May, Operads, algebras, modules and motives, Astérisque 233 (1995)

[23] L G Lewis Jr., J P May, M Steinberger, J E Mcclure, Equivariant stable homotopy theory, Lecture Notes in Math. 1213, Springer (1986)

[24] J Lillig, A union theorem for cofibrations, Arch. Math. $($Basel$)$ 24 (1973) 410

[25] S Mac Lane, Categories for the working mathematician, Graduate Texts in Math. 5, Springer (1998)

[26] I Madsen, Algebraic $K$–theory and traces, from: "Current developments in mathematics, 1995 (Cambridge, MA)" (editors R Bott, M Hopkins, A Jaffe, I Singer, D Stroock, S T Yau), Int. Press (1994) 191

[27] M Mahowald, Ring spectra which are Thom complexes, Duke Math. J. 46 (1979) 549

[28] M Mahowald, D C Ravenel, P Shick, The Thomified Eilenberg-Moore spectral sequence, from: "Cohomological methods in homotopy theory (Bellaterra, 1998)" (editors J Aguadé, C Broto, C Casacuberta), Progr. Math. 196, Birkhäuser (2001) 249

[29] M Mahowald, N Ray, A note on the Thom isomorphism, Proc. Amer. Math. Soc. 82 (1981) 307

[30] M A Mandell, Topological Hochschild homology of an ${E}_n$ ring spectrum is ${E}_{n-1}$, Preprint (2004)

[31] M A Mandell, J P May, S Schwede, B Shipley, Model categories of diagram spectra, Proc. London Math. Soc. $(3)$ 82 (2001) 441

[32] J P May, The geometry of iterated loop spaces, Lectures Notes in Math. 271, Springer (1972)

[33] J P May, Classifying spaces and fibrations, Mem. Amer. Math. Soc. 155 (1975)

[34] J P May, $E_{\infty }$ ring spaces and $E_{\infty }$ ring spectra, Lecture Notes in Math. 577, Springer (1977) 268

[35] J P May, Fibrewise localization and completion, Trans. Amer. Math. Soc. 258 (1980) 127

[36] J P May, J Sigurdsson, Parametrized homotopy theory, Math. Surveys and Monogr. 132, Amer. Math. Soc. (2006)

[37] J R Munkres, Topology: a first course, Prentice-Hall Inc. (2000)

[38] S Sagave, C Schlichtkrull, Diagram spaces and symmetric spectra, in preparation

[39] C Schlichtkrull, Higher topological Hochschild homology of Thom spectra

[40] C Schlichtkrull, Units of ring spectra and their traces in algebraic $K$–theory, Geom. Topol. 8 (2004) 645

[41] C Schlichtkrull, The homotopy infinite symmetric product represents stable homotopy, Algebr. Geom. Topol. 7 (2007) 1963

[42] C Schlichtkrull, Thom spectra that are symmetric spectra, Doc. Math. 14 (2009) 699

[43] S Schwede, B E Shipley, Algebras and modules in monoidal model categories, Proc. London Math. Soc. $(3)$ 80 (2000) 491

[44] G Segal, Configuration-spaces and iterated loop-spaces, Invent. Math. 21 (1973) 213

[45] G Segal, Categories and cohomology theories, Topology 13 (1974) 293

[46] B Shipley, Symmetric spectra and topological Hochschild homology, $K$–Theory 19 (2000) 155

[47] R E Stong, Notes on cobordism theory, Math. notes, Princeton Univ. Press (1968)

[48] A Strøm, The homotopy category is a homotopy category, Arch. Math. $($Basel$)$ 23 (1972) 435

[49] R W Thomason, Uniqueness of delooping machines, Duke Math. J. 46 (1979) 217

[50] F Waldhausen, Algebraic $K$–theory of topological spaces. II, from: "Algebraic topology, Aarhus 1978 (Proc. Sympos., Univ. Aarhus, 1978)" (editors J L Dupont, I Madsen), Lecture Notes in Math. 763, Springer (1979) 356

[51] G W Whitehead, Elements of homotopy theory, Graduate Texts in Math. 61, Springer (1978)

Cité par Sources :