A local curvature bound in Ricci flow
Geometry & topology, Tome 14 (2010) no. 2, pp. 1095-1110.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

In this note we give a proof of a result which is closely related to Perelman’s theorem in Section 10.3 of the paper The entropy formula for the Ricci flow and its geometric applications [?].

DOI : 10.2140/gt.2010.14.1095
Keywords: local curvature bound, Ricci flow

Lu, Peng 1

1 Department of Mathematics, University of Oregon, Eugene, OR 97405
@article{GT_2010_14_2_a10,
     author = {Lu, Peng},
     title = {A local curvature bound in {Ricci} flow},
     journal = {Geometry & topology},
     pages = {1095--1110},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2010},
     doi = {10.2140/gt.2010.14.1095},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.1095/}
}
TY  - JOUR
AU  - Lu, Peng
TI  - A local curvature bound in Ricci flow
JO  - Geometry & topology
PY  - 2010
SP  - 1095
EP  - 1110
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.1095/
DO  - 10.2140/gt.2010.14.1095
ID  - GT_2010_14_2_a10
ER  - 
%0 Journal Article
%A Lu, Peng
%T A local curvature bound in Ricci flow
%J Geometry & topology
%D 2010
%P 1095-1110
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.1095/
%R 10.2140/gt.2010.14.1095
%F GT_2010_14_2_a10
Lu, Peng. A local curvature bound in Ricci flow. Geometry & topology, Tome 14 (2010) no. 2, pp. 1095-1110. doi : 10.2140/gt.2010.14.1095. http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.1095/

[1] H D Cao, B Chow, S C Chu, S T Yau, editors, Collected papers on Ricci flow, Ser. Geom. Topol. 37, International Press (2003)

[2] J Cheeger, M Gromov, M Taylor, Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Differential Geom. 17 (1982) 15

[3] B Chow, S C Chu, D Glickenstein, C Guenther, J Isenberg, T Ivey, D Knopf, P Lu, F Luo, L Ni, The Ricci flow: techniques and applications. Part III. Geometric-analytic aspects, Math. Surveys and Monogr. 163, Amer. Math. Soc. (2010) 517

[4] G Perelman, The entropy formula for the Ricci flow and its geometric applications

[5] Y Wang, Pseudolocality of Ricci flow under integral bound of curvature

Cité par Sources :