Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
In this note we give a proof of a result which is closely related to Perelman’s theorem in Section 10.3 of the paper The entropy formula for the Ricci flow and its geometric applications [?].
Lu, Peng 1
@article{GT_2010_14_2_a10, author = {Lu, Peng}, title = {A local curvature bound in {Ricci} flow}, journal = {Geometry & topology}, pages = {1095--1110}, publisher = {mathdoc}, volume = {14}, number = {2}, year = {2010}, doi = {10.2140/gt.2010.14.1095}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.1095/} }
Lu, Peng. A local curvature bound in Ricci flow. Geometry & topology, Tome 14 (2010) no. 2, pp. 1095-1110. doi : 10.2140/gt.2010.14.1095. http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.1095/
[1] Collected papers on Ricci flow, Ser. Geom. Topol. 37, International Press (2003)
, , , , editors,[2] Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Differential Geom. 17 (1982) 15
, , ,[3] The Ricci flow: techniques and applications. Part III. Geometric-analytic aspects, Math. Surveys and Monogr. 163, Amer. Math. Soc. (2010) 517
, , , , , , , , , ,[4] The entropy formula for the Ricci flow and its geometric applications
,[5] Pseudolocality of Ricci flow under integral bound of curvature
,Cité par Sources :