Asymptotic geometry in products of Hadamard spaces with rank one isometries
Geometry & topology, Tome 14 (2010) no. 2, pp. 1063-1094.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

In this article we study asymptotic properties of certain discrete groups Γ acting by isometries on a product X = X1 × X2 of locally compact Hadamard spaces which admit a geodesic without flat half-plane. The motivation comes from the fact that Kac–Moody groups over finite fields, which can be seen as generalizations of arithmetic groups over function fields, belong to the considered class of groups. Hence one may ask whether classical properties of discrete subgroups of higher rank Lie groups as in Benoist [Geom. Funct. Anal. 7 (1997) 1-47] and Quint [Comment. Math. Helv. 77 (2002) 563-608] hold in this context.

In the first part of the paper we describe the structure of the geometric limit set of Γ and prove statements analogous to the results of Benoist. The second part is concerned with the exponential growth rate δθ(Γ) of orbit points in X with a prescribed “slope” θ (0,π2), which appropriately generalizes the critical exponent in higher rank. In analogy to Quint’s result we show that the homogeneous extension ΨΓ to 02 of δθ(Γ) as a function of θ is upper semicontinuous and concave.

DOI : 10.2140/gt.2010.14.1063
Keywords: discrete group, $\mathrm{CAT}(0)$–spaces, limit set, critical exponent, Kac–Moody groups

Link, Gabriele 1

1 Karlsruhe Institute of Technology (KIT), Kaiserstr 12, 76131 Karlsruhe, Germany
@article{GT_2010_14_2_a9,
     author = {Link, Gabriele},
     title = {Asymptotic geometry in products of {Hadamard} spaces with rank one isometries},
     journal = {Geometry & topology},
     pages = {1063--1094},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2010},
     doi = {10.2140/gt.2010.14.1063},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.1063/}
}
TY  - JOUR
AU  - Link, Gabriele
TI  - Asymptotic geometry in products of Hadamard spaces with rank one isometries
JO  - Geometry & topology
PY  - 2010
SP  - 1063
EP  - 1094
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.1063/
DO  - 10.2140/gt.2010.14.1063
ID  - GT_2010_14_2_a9
ER  - 
%0 Journal Article
%A Link, Gabriele
%T Asymptotic geometry in products of Hadamard spaces with rank one isometries
%J Geometry & topology
%D 2010
%P 1063-1094
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.1063/
%R 10.2140/gt.2010.14.1063
%F GT_2010_14_2_a9
Link, Gabriele. Asymptotic geometry in products of Hadamard spaces with rank one isometries. Geometry & topology, Tome 14 (2010) no. 2, pp. 1063-1094. doi : 10.2140/gt.2010.14.1063. http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.1063/

[1] W Ballmann, Axial isometries of manifolds of nonpositive curvature, Math. Ann. 259 (1982) 131

[2] W Ballmann, Lectures on spaces of nonpositive curvature, DMV Seminar 25, Birkhäuser Verlag (1995)

[3] W Ballmann, M Brin, Orbihedra of nonpositive curvature, Inst. Hautes Études Sci. Publ. Math. (1995)

[4] W Ballmann, M Gromov, V Schroeder, Manifolds of nonpositive curvature, Progress in Math. 61, Birkhäuser (1985)

[5] Y Benoist, Propriétés asymptotiques des groupes linéaires, Geom. Funct. Anal. 7 (1997) 1

[6] M Bestvina, K Fujiwara, A characterization of higher rank symmetric spaces via bounded cohomology, Geom. Funct. Anal. 19 (2009) 11

[7] M R Bridson, A Haefliger, Metric spaces of non-positive curvature, Grund. der Math. Wissenschaften 319, Springer (1999)

[8] M Burger, Intersection, the Manhattan curve, and Patterson–Sullivan theory in rank $2$, Internat. Math. Res. Notices (1993) 217

[9] M Burger, N Monod, Continuous bounded cohomology and applications to rigidity theory, Geom. Funct. Anal. 12 (2002) 219

[10] P E Caprace, K Fujiwara, Rank one isometries of buildings and quasi-morphisms of Kac–Moody groups

[11] P E Caprace, B Rémy, Simplicity and superrigidity of twin building lattices, Invent. Math. 176 (2009) 169

[12] F Dal’Bo, Remarques sur le spectre des longueurs d'une surface et comptages, Bol. Soc. Brasil. Mat. $($N.S.$)$ 30 (1999) 199

[13] F Dal’Bo, I Kim, Shadow lemma on the product of Hadamard manifolds and applications, from: "Actes du Séminaire de Théorie Spectrale et Géométrie. Vol. 25. Année 2006–2007", Sémin. Théor. Spectr. Géom. 25, Univ. Grenoble I (2008) 105

[14] V A Kaimanovich, Double ergodicity of the Poisson boundary and applications to bounded cohomology, Geom. Funct. Anal. 13 (2003) 852

[15] G Link, Hausdorff dimension of limit sets of discrete subgroups of higher rank Lie groups, Geom. Funct. Anal. 14 (2004) 400

[16] J F Quint, Divergence exponentielle des sous-groupes discrets en rang supérieur, Comment. Math. Helv. 77 (2002) 563

[17] J F Quint, Mesures de Patterson–Sullivan en rang supérieur, Geom. Funct. Anal. 12 (2002) 776

[18] B Rémy, Construction de réseaux en théorie de Kac–Moody, C. R. Acad. Sci. Paris Sér. I Math. 329 (1999) 475

[19] C Yue, The ergodic theory of discrete isometry groups on manifolds of variable negative curvature, Trans. Amer. Math. Soc. 348 (1996) 4965

Cité par Sources :