The h–principle for broken Lefschetz fibrations
Geometry & topology, Tome 14 (2010) no. 2, pp. 1015-1061.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

It is known that an arbitrary smooth, oriented 4–manifold admits the structure of what is called a broken Lefschetz fibration. Given a broken Lefschetz fibration, there are certain modifications, realized as homotopies of the fibration map, that enable one to construct infinitely many distinct fibrations of the same manifold. The aim of this paper is to prove that these modifications are sufficient to obtain every broken Lefschetz fibration in a given homotopy class of smooth maps. One notable application is that adding an additional “projection" move generates all broken Lefschetz fibrations, regardless of homotopy class. The paper ends with further applications and open problems.

DOI : 10.2140/gt.2010.14.1015
Keywords: broken, Lefschetz fibration, $4$–manifold, stable map

Williams, Jonathan 1

1 Department of Mathematics, The University of Texas at Austin, Austin, Texas 78712
@article{GT_2010_14_2_a8,
     author = {Williams, Jonathan},
     title = {The h{\textendash}principle for broken {Lefschetz} fibrations},
     journal = {Geometry & topology},
     pages = {1015--1061},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2010},
     doi = {10.2140/gt.2010.14.1015},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.1015/}
}
TY  - JOUR
AU  - Williams, Jonathan
TI  - The h–principle for broken Lefschetz fibrations
JO  - Geometry & topology
PY  - 2010
SP  - 1015
EP  - 1061
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.1015/
DO  - 10.2140/gt.2010.14.1015
ID  - GT_2010_14_2_a8
ER  - 
%0 Journal Article
%A Williams, Jonathan
%T The h–principle for broken Lefschetz fibrations
%J Geometry & topology
%D 2010
%P 1015-1061
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.1015/
%R 10.2140/gt.2010.14.1015
%F GT_2010_14_2_a8
Williams, Jonathan. The h–principle for broken Lefschetz fibrations. Geometry & topology, Tome 14 (2010) no. 2, pp. 1015-1061. doi : 10.2140/gt.2010.14.1015. http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.1015/

[1] S Akbulut, Ç Karakurt, Every $4$–manifold is BLF, J. Gökova Geom. Topol. GGT 2 (2008) 83

[2] Y Ando, On the elimination of Morin singularities, J. Math. Soc. Japan 37 (1985) 471

[3] Y Ando, On local structures of the singularities $A_k\;D_k$ and $E_k$ of smooth maps, Trans. Amer. Math. Soc. 331 (1992) 639

[4] V I Arnold, Catastrophe theory, Springer (1992)

[5] V I Arnold, S M Guseĭn-Zade, A N Varchenko, Singularities of differentiable maps. Vol. I. The classification of critical points, caustics and wave fronts, Monogr. in Math. 82, Birkhäuser (1985)

[6] D Auroux, S K Donaldson, L Katzarkov, Singular Lefschetz pencils, Geom. Topol. 9 (2005) 1043

[7] R İ Baykur, Existence of broken Lefschetz fibrations, Int. Math. Res. Not. (2008)

[8] R İ Baykur, Handlebody argument for modifying achiral singularities (appendix to \citeL1), Geom. Topol. 13 (2009) 312

[9] R İ Baykur, Topology of broken Lefschetz fibrations and near-symplectic four-manifolds, Pacific J. Math. 240 (2009) 201

[10] S Donaldson, I Smith, Lefschetz pencils and the canonical class for symplectic four-manifolds, Topology 42 (2003) 743

[11] Y Eliashberg, N M Mishachev, Wrinkling of smooth mappings and its applications. I, Invent. Math. 130 (1997) 345

[12] Y Eliashberg, N Mishachev, Introduction to the $h$–principle, Graduate Studies in Math. 48, Amer. Math. Soc. (2002)

[13] D T Gay, R Kirby, Constructing Lefschetz-type fibrations on four-manifolds, Geom. Topol. 11 (2007) 2075

[14] R E Gompf, A I Stipsicz, $4$–manifolds and Kirby calculus, Graduate Studies in Math. 20, Amer. Math. Soc. (1999)

[15] Y Lekili, Heegaard Floer homology of broken fibrations over the circle, Preprint (2009)

[16] Y Lekili, Wrinkled fibrations on near-symplectic manifolds, Geom. Topol. 13 (2009) 277

[17] H I Levine, Elimination of cusps, Topology 3 (1965) 263

[18] P Ozsváth, Z Szabó, Holomorphic triangles and invariants for smooth four-manifolds, Adv. Math. 202 (2006) 326

[19] T Perutz, Lagrangian matching invariants for fibred four-manifolds. I, Geom. Topol. 11 (2007) 759

[20] O Saeki, Elimination of definite fold, Kyushu J. Math. 60 (2006) 363

[21] C H Taubes, Counting pseudo-holomorphic submanifolds in dimension $4$, J. Differential Geom. 44 (1996) 818

[22] M Usher, The Gromov invariant and the Donaldson–Smith standard surface count, Geom. Topol. 8 (2004) 565

[23] G Wassermann, Stability of unfoldings in space and time, Acta Math. 135 (1975) 57

Cité par Sources :