Orbifold quantum Riemann–Roch, Lefschetz and Serre
Geometry & topology, Tome 14 (2010) no. 1, pp. 1-81.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Given a vector bundle F on a smooth Deligne–Mumford stack X and an invertible multiplicative characteristic class c, we define orbifold Gromov–Witten invariants of X twisted by F and c. We prove a “quantum Riemann–Roch theorem” which expresses the generating function of the twisted invariants in terms of the generating function of the untwisted invariants. A quantum Lefschetz hyperplane theorem is derived from this by specializing to genus zero. As an application, we determine the relationship between genus–0 orbifold Gromov–Witten invariants of X and that of a complete intersection, under additional assumptions. This provides a way to verify mirror symmetry predictions for some complete intersection orbifolds.

DOI : 10.2140/gt.2010.14.1
Keywords: orbifold Gromov–Witten invariant, Deligne–Mumford stack, Givental's formalism, Grothendieck–Riemann–Roch formula, mirror symmetry

Tseng, Hsian-Hua 1

1 Department of Mathematics, Ohio State University, 100 Math Tower, 231 West 18th Avenue, Columbus, OH 43210-1174, USA, Department of Mathematics, University of Wisconsin-Madison, Van Vleck Hall, 480 Lincoln Drive, Madison, WI 53706-1388, USA
@article{GT_2010_14_1_a0,
     author = {Tseng, Hsian-Hua},
     title = {Orbifold quantum {Riemann{\textendash}Roch,} {Lefschetz} and {Serre}},
     journal = {Geometry & topology},
     pages = {1--81},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2010},
     doi = {10.2140/gt.2010.14.1},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.1/}
}
TY  - JOUR
AU  - Tseng, Hsian-Hua
TI  - Orbifold quantum Riemann–Roch, Lefschetz and Serre
JO  - Geometry & topology
PY  - 2010
SP  - 1
EP  - 81
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.1/
DO  - 10.2140/gt.2010.14.1
ID  - GT_2010_14_1_a0
ER  - 
%0 Journal Article
%A Tseng, Hsian-Hua
%T Orbifold quantum Riemann–Roch, Lefschetz and Serre
%J Geometry & topology
%D 2010
%P 1-81
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.1/
%R 10.2140/gt.2010.14.1
%F GT_2010_14_1_a0
Tseng, Hsian-Hua. Orbifold quantum Riemann–Roch, Lefschetz and Serre. Geometry & topology, Tome 14 (2010) no. 1, pp. 1-81. doi : 10.2140/gt.2010.14.1. http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.1/

[1] D Abramovich, T Graber, M Olsson, H H Tseng, On the global quotient structure of the space of twisted stable maps to a quotient stack, J. Algebraic Geom. 16 (2007) 731

[2] D Abramovich, T Graber, A Vistoli, Algebraic orbifold quantum products, from: "Orbifolds in mathematics and physics (Madison, WI, 2001)" (editors A Adem, J Morava, Y Ruan), Contemp. Math. 310, Amer. Math. Soc. (2002) 1

[3] D Abramovich, T Graber, A Vistoli, Gromov–Witten theory of Deligne–Mumford stacks, Amer. J. Math. 130 (2008) 1337

[4] D Abramovich, A Vistoli, Compactifying the space of stable maps, J. Amer. Math. Soc. 15 (2002) 27

[5] K Behrend, Gromov–Witten invariants in algebraic geometry, Invent. Math. 127 (1997) 601

[6] K Behrend, Cohomology of stacks, from: "Intersection theory and moduli" (editors E Arbarello, G Ellingsrud, L Goettsche), ICTP Lect. Notes XIX, Abdus Salam Int. Cent. Theoret. Phys. (2004) 249

[7] K Behrend, D Edidin, B Fantechi, W Fulton, L Göttsche, A Kresch, Introduction to stacks, Book in preparation

[8] K Behrend, B Fantechi, The intrinsic normal cone, Invent. Math. 128 (1997) 45

[9] K Behrend, G Ginot, B Noohi, P Xu, String topology for stacks

[10] K Behrend, Y Manin, Stacks of stable maps and Gromov–Witten invariants, Duke Math. J. 85 (1996) 1

[11] A Bertram, Another way to enumerate rational curves with torus actions, Invent. Math. 142 (2000) 487

[12] L A Borisov, L Chen, G G Smith, The orbifold Chow ring of toric Deligne–Mumford stacks, J. Amer. Math. Soc. 18 (2005) 193

[13] J Bryan, T Graber, R Pandharipande, The orbifold quantum cohomology of $\C^2/Z_3$ and Hurwitz–Hodge integrals, J. Algebraic Geom. 17 (2008) 1

[14] C Cadman, Quantum cohomology of stacks and enumerative applications, PhD thesis, Columbia University (2004)

[15] W Chen, Y Ruan, Orbifold Gromov–Witten theory, from: "Orbifolds in mathematics and physics (Madison, WI, 2001)" (editors A Adem, J Morava, Y Ruan), Contemp. Math. 310, Amer. Math. Soc. (2002) 25

[16] W Chen, Y Ruan, A new cohomology theory of orbifold, Comm. Math. Phys. 248 (2004) 1

[17] T Coates, Riemann–Roch theorems in Gromov–Witten theory, PhD thesis, University of California Berkeley (2003)

[18] T Coates, A Corti, H Iritani, H H Tseng, Computing genus-zero twisted Gromov–Witten invariants, Duke Math. J. 147 (2009) 377

[19] T Coates, A Givental, Quantum Riemann–Roch, Lefschetz and Serre, Ann. of Math. $(2)$ 165 (2007) 15

[20] T Coates, H Iritani, H H Tseng, Wall-crossings in toric Gromov–Witten theory I: Crepant examples, Geom. Topol. 13 (2009) 2675

[21] T Coates, Y P Lee, A Corti, H H Tseng, The quantum orbifold cohomology of weighted projective spaces, Acta Math. 202 (2009) 139

[22] D A Cox, S Katz, Mirror symmetry and algebraic geometry, Math. Surveys and Monogr. 68, Amer. Math. Soc. (1999)

[23] D Edidin, Notes on the construction of the moduli space of curves, from: "Recent progress in intersection theory (Bologna, 1997)" (editors G Ellingsrud, W Fulton, A Vistoli), Trends Math., Birkhäuser (2000) 85

[24] D Edidin, B Hassett, A Kresch, A Vistoli, Brauer groups and quotient stacks, Amer. J. Math. 123 (2001) 761

[25] C Faber, R Pandharipande, Hodge integrals and Gromov–Witten theory, Invent. Math. 139 (2000) 173

[26] B Fantechi, Stacks for everybody, from: "European Congress of Mathematics, Vol. I (Barcelona, 2000)", Progr. Math. 201, Birkhäuser (2001) 349

[27] W Fulton, Intersection theory, Ergebnisse der Math. und ihrer Grenzgebiete (3) 2, Springer (1984)

[28] A Gathmann, Relative Gromov–Witten invariants and the mirror formula, Math. Ann. 325 (2003) 393

[29] A Givental, Stationary phase integrals, quantum Toda lattices, flag manifolds and the mirror conjecture, from: "Topics in singularity theory" (editors A Khovanskii, A Varchenko, V Vassiliev), Amer. Math. Soc. Transl. Ser. 2 180, Amer. Math. Soc. (1997) 103

[30] A Givental, Elliptic Gromov–Witten invariants and the generalized mirror conjecture, from: "Integrable systems and algebraic geometry (Kobe/Kyoto, 1997)" (editors M H Saito, Y Shimuzu, K Ueno), World Sci. Publ. (1998) 107

[31] A Givental, A mirror theorem for toric complete intersections, from: "Topological field theory, primitive forms and related topics (Kyoto, 1996)" (editors M Kashiwara, A Matsuo, K Saito, I Satake), Progr. Math. 160, Birkhäuser (1998) 141

[32] A B Givental, Gromov–Witten invariants and quantization of quadratic Hamiltonians, Mosc. Math. J. 1 (2001) 551, 645

[33] A B Givental, Symplectic geometry of Frobenius structures, from: "Frobenius manifolds" (editors C Hertling, M Marcolli), Aspects Math. E36, Vieweg (2004) 91

[34] T J Jarvis, T Kimura, Orbifold quantum cohomology of the classifying space of a finite group, from: "Orbifolds in mathematics and physics (Madison, WI, 2001)" (editors A Adem, J Morava, Y Ruan), Contemp. Math. 310, Amer. Math. Soc. (2002) 123

[35] A J De Jong, A result of Gabber, Preprint

[36] T Kawasaki, The Riemann–Roch theorem for complex $V$–manifolds, Osaka J. Math. 16 (1979) 151

[37] S Keel, S Mori, Quotients by groupoids, Ann. of Math. $(2)$ 145 (1997) 193

[38] B Kim, Quantum hyperplane section theorem for homogeneous spaces, Acta Math. 183 (1999) 71

[39] B Kim, A Kresch, T Pantev, Functoriality in intersection theory and a conjecture of Cox, Katz, and Lee, J. Pure Appl. Algebra 179 (2003) 127

[40] M Kontsevich, Enumeration of rational curves via torus actions, from: "The moduli space of curves (Texel Island, 1994)" (editors R Dijkgraaf, C Faber, G van der Geer), Progr. Math. 129, Birkhäuser (1995) 335

[41] A Kresch, Cycle groups for Artin stacks, Invent. Math. 138 (1999) 495

[42] A Kresch, On the geometry of Deligne–Mumford stacks, from: "Algebraic geometry—Seattle 2005. Part 1" (editors D Abramovich, A Bertram, L Katzarkov, R Pandharipande, M Thaddeus), Proc. Sympos. Pure Math. 80, Amer. Math. Soc. (2009) 259

[43] A Kresch, A Vistoli, On coverings of Deligne–Mumford stacks and surjectivity of the Brauer map, Bull. London Math. Soc. 36 (2004) 188

[44] G Laumon, L Moret-Bailly, Champs algébriques, Ergebnisse der Math. und ihrer Grenzgebiete (3) 39, Springer (2000)

[45] Y P Lee, Quantum Lefschetz hyperplane theorem, Invent. Math. 145 (2001) 121

[46] B H Lian, K Liu, S T Yau, Mirror principle. I, II, III, Asian J. Math. 1, 3, 3 (1997, 1999, 1999) 729, 109, 771

[47] Y I Manin, Frobenius manifolds, quantum cohomology, and moduli spaces, Amer. Math. Soc. Colloq. Publ. 47, Amer. Math. Soc. (1999)

[48] D Mumford, Towards an enumerative geometry of the moduli space of curves, from: "Arithmetic and geometry, Vol. II" (editors M Artin, J Tate), Progr. Math. 36, Birkhäuser (1983) 271

[49] B Toen, $K$–theory and cohomology of algebraic stacks: Riemann–Roch theorems, D–modules and GAGA theorems

[50] B Toen, Théorèmes de Riemann–Roch pour les champs de Deligne–Mumford, $K$–Theory 18 (1999) 33

[51] B Totaro, The resolution property for schemes and stacks, J. Reine Angew. Math. 577 (2004) 1

[52] A Vistoli, Intersection theory on algebraic stacks and on their moduli spaces, Invent. Math. 97 (1989) 613

[53] E T Whittaker, G N Watson, A course of modern analysis. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions, Cambridge Math. Library, Cambridge Univ. Press (1996)

[54] J Zhou, Crepant resolution conjecture in all genera for type A singularities

[55] J Zhou, On computations of Hurwitz–Hodge integrals

Cité par Sources :