Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Given a vector bundle on a smooth Deligne–Mumford stack and an invertible multiplicative characteristic class , we define orbifold Gromov–Witten invariants of twisted by and . We prove a “quantum Riemann–Roch theorem” which expresses the generating function of the twisted invariants in terms of the generating function of the untwisted invariants. A quantum Lefschetz hyperplane theorem is derived from this by specializing to genus zero. As an application, we determine the relationship between genus– orbifold Gromov–Witten invariants of and that of a complete intersection, under additional assumptions. This provides a way to verify mirror symmetry predictions for some complete intersection orbifolds.
Tseng, Hsian-Hua 1
@article{GT_2010_14_1_a0, author = {Tseng, Hsian-Hua}, title = {Orbifold quantum {Riemann{\textendash}Roch,} {Lefschetz} and {Serre}}, journal = {Geometry & topology}, pages = {1--81}, publisher = {mathdoc}, volume = {14}, number = {1}, year = {2010}, doi = {10.2140/gt.2010.14.1}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.1/} }
Tseng, Hsian-Hua. Orbifold quantum Riemann–Roch, Lefschetz and Serre. Geometry & topology, Tome 14 (2010) no. 1, pp. 1-81. doi : 10.2140/gt.2010.14.1. http://geodesic.mathdoc.fr/articles/10.2140/gt.2010.14.1/
[1] On the global quotient structure of the space of twisted stable maps to a quotient stack, J. Algebraic Geom. 16 (2007) 731
, , , ,[2] Algebraic orbifold quantum products, from: "Orbifolds in mathematics and physics (Madison, WI, 2001)" (editors A Adem, J Morava, Y Ruan), Contemp. Math. 310, Amer. Math. Soc. (2002) 1
, , ,[3] Gromov–Witten theory of Deligne–Mumford stacks, Amer. J. Math. 130 (2008) 1337
, , ,[4] Compactifying the space of stable maps, J. Amer. Math. Soc. 15 (2002) 27
, ,[5] Gromov–Witten invariants in algebraic geometry, Invent. Math. 127 (1997) 601
,[6] Cohomology of stacks, from: "Intersection theory and moduli" (editors E Arbarello, G Ellingsrud, L Goettsche), ICTP Lect. Notes XIX, Abdus Salam Int. Cent. Theoret. Phys. (2004) 249
,[7] Introduction to stacks, Book in preparation
, , , , , ,[8] The intrinsic normal cone, Invent. Math. 128 (1997) 45
, ,[9] String topology for stacks
, , , ,[10] Stacks of stable maps and Gromov–Witten invariants, Duke Math. J. 85 (1996) 1
, ,[11] Another way to enumerate rational curves with torus actions, Invent. Math. 142 (2000) 487
,[12] The orbifold Chow ring of toric Deligne–Mumford stacks, J. Amer. Math. Soc. 18 (2005) 193
, , ,[13] The orbifold quantum cohomology of $\C^2/Z_3$ and Hurwitz–Hodge integrals, J. Algebraic Geom. 17 (2008) 1
, , ,[14] Quantum cohomology of stacks and enumerative applications, PhD thesis, Columbia University (2004)
,[15] Orbifold Gromov–Witten theory, from: "Orbifolds in mathematics and physics (Madison, WI, 2001)" (editors A Adem, J Morava, Y Ruan), Contemp. Math. 310, Amer. Math. Soc. (2002) 25
, ,[16] A new cohomology theory of orbifold, Comm. Math. Phys. 248 (2004) 1
, ,[17] Riemann–Roch theorems in Gromov–Witten theory, PhD thesis, University of California Berkeley (2003)
,[18] Computing genus-zero twisted Gromov–Witten invariants, Duke Math. J. 147 (2009) 377
, , , ,[19] Quantum Riemann–Roch, Lefschetz and Serre, Ann. of Math. $(2)$ 165 (2007) 15
, ,[20] Wall-crossings in toric Gromov–Witten theory I: Crepant examples, Geom. Topol. 13 (2009) 2675
, , ,[21] The quantum orbifold cohomology of weighted projective spaces, Acta Math. 202 (2009) 139
, , , ,[22] Mirror symmetry and algebraic geometry, Math. Surveys and Monogr. 68, Amer. Math. Soc. (1999)
, ,[23] Notes on the construction of the moduli space of curves, from: "Recent progress in intersection theory (Bologna, 1997)" (editors G Ellingsrud, W Fulton, A Vistoli), Trends Math., Birkhäuser (2000) 85
,[24] Brauer groups and quotient stacks, Amer. J. Math. 123 (2001) 761
, , , ,[25] Hodge integrals and Gromov–Witten theory, Invent. Math. 139 (2000) 173
, ,[26] Stacks for everybody, from: "European Congress of Mathematics, Vol. I (Barcelona, 2000)", Progr. Math. 201, Birkhäuser (2001) 349
,[27] Intersection theory, Ergebnisse der Math. und ihrer Grenzgebiete (3) 2, Springer (1984)
,[28] Relative Gromov–Witten invariants and the mirror formula, Math. Ann. 325 (2003) 393
,[29] Stationary phase integrals, quantum Toda lattices, flag manifolds and the mirror conjecture, from: "Topics in singularity theory" (editors A Khovanskii, A Varchenko, V Vassiliev), Amer. Math. Soc. Transl. Ser. 2 180, Amer. Math. Soc. (1997) 103
,[30] Elliptic Gromov–Witten invariants and the generalized mirror conjecture, from: "Integrable systems and algebraic geometry (Kobe/Kyoto, 1997)" (editors M H Saito, Y Shimuzu, K Ueno), World Sci. Publ. (1998) 107
,[31] A mirror theorem for toric complete intersections, from: "Topological field theory, primitive forms and related topics (Kyoto, 1996)" (editors M Kashiwara, A Matsuo, K Saito, I Satake), Progr. Math. 160, Birkhäuser (1998) 141
,[32] Gromov–Witten invariants and quantization of quadratic Hamiltonians, Mosc. Math. J. 1 (2001) 551, 645
,[33] Symplectic geometry of Frobenius structures, from: "Frobenius manifolds" (editors C Hertling, M Marcolli), Aspects Math. E36, Vieweg (2004) 91
,[34] Orbifold quantum cohomology of the classifying space of a finite group, from: "Orbifolds in mathematics and physics (Madison, WI, 2001)" (editors A Adem, J Morava, Y Ruan), Contemp. Math. 310, Amer. Math. Soc. (2002) 123
, ,[35] A result of Gabber, Preprint
,[36] The Riemann–Roch theorem for complex $V$–manifolds, Osaka J. Math. 16 (1979) 151
,[37] Quotients by groupoids, Ann. of Math. $(2)$ 145 (1997) 193
, ,[38] Quantum hyperplane section theorem for homogeneous spaces, Acta Math. 183 (1999) 71
,[39] Functoriality in intersection theory and a conjecture of Cox, Katz, and Lee, J. Pure Appl. Algebra 179 (2003) 127
, , ,[40] Enumeration of rational curves via torus actions, from: "The moduli space of curves (Texel Island, 1994)" (editors R Dijkgraaf, C Faber, G van der Geer), Progr. Math. 129, Birkhäuser (1995) 335
,[41] Cycle groups for Artin stacks, Invent. Math. 138 (1999) 495
,[42] On the geometry of Deligne–Mumford stacks, from: "Algebraic geometry—Seattle 2005. Part 1" (editors D Abramovich, A Bertram, L Katzarkov, R Pandharipande, M Thaddeus), Proc. Sympos. Pure Math. 80, Amer. Math. Soc. (2009) 259
,[43] On coverings of Deligne–Mumford stacks and surjectivity of the Brauer map, Bull. London Math. Soc. 36 (2004) 188
, ,[44] Champs algébriques, Ergebnisse der Math. und ihrer Grenzgebiete (3) 39, Springer (2000)
, ,[45] Quantum Lefschetz hyperplane theorem, Invent. Math. 145 (2001) 121
,[46] Mirror principle. I, II, III, Asian J. Math. 1, 3, 3 (1997, 1999, 1999) 729, 109, 771
, , ,[47] Frobenius manifolds, quantum cohomology, and moduli spaces, Amer. Math. Soc. Colloq. Publ. 47, Amer. Math. Soc. (1999)
,[48] Towards an enumerative geometry of the moduli space of curves, from: "Arithmetic and geometry, Vol. II" (editors M Artin, J Tate), Progr. Math. 36, Birkhäuser (1983) 271
,[49] $K$–theory and cohomology of algebraic stacks: Riemann–Roch theorems, D–modules and GAGA theorems
,[50] Théorèmes de Riemann–Roch pour les champs de Deligne–Mumford, $K$–Theory 18 (1999) 33
,[51] The resolution property for schemes and stacks, J. Reine Angew. Math. 577 (2004) 1
,[52] Intersection theory on algebraic stacks and on their moduli spaces, Invent. Math. 97 (1989) 613
,[53] A course of modern analysis. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions, Cambridge Math. Library, Cambridge Univ. Press (1996)
, ,[54] Crepant resolution conjecture in all genera for type A singularities
,[55] On computations of Hurwitz–Hodge integrals
,Cité par Sources :