On the homology of the space of knots
Geometry & topology, Tome 13 (2009) no. 1, pp. 99-139.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Consider the space of long knots in n, Kn,1. This is the space of knots as studied by V Vassiliev. Based on previous work [Budney: Topology 46 (2007) 1–27], [Cohen, Lada and May: Springer Lecture Notes 533 (1976)] it follows that the rational homology of K3,1 is free Gerstenhaber–Poisson algebra. A partial description of a basis is given here. In addition, the mod–p homology of this space is a free, restricted Gerstenhaber–Poisson algebra. Recursive application of this theorem allows us to deduce that there is p–torsion of all orders in the integral homology of K3,1.

This leads to some natural questions about the homotopy type of the space of long knots in n for n > 3, as well as consequences for the space of smooth embeddings of S1 in S3 and embeddings of S1 in 3.

DOI : 10.2140/gt.2009.13.99
Keywords: knots, embeddings, spaces, cubes, homology

Budney, Ryan 1 ; Cohen, Fred 2

1 Department of Mathematics and Statistics, University of Victoria, Victoria BC, Canada, V8W 3P4
2 Department of Mathematics, University of Rochester, Rochester, NY 14627, USA
@article{GT_2009_13_1_a3,
     author = {Budney, Ryan and Cohen, Fred},
     title = {On the homology of the space of knots},
     journal = {Geometry & topology},
     pages = {99--139},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2009},
     doi = {10.2140/gt.2009.13.99},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.99/}
}
TY  - JOUR
AU  - Budney, Ryan
AU  - Cohen, Fred
TI  - On the homology of the space of knots
JO  - Geometry & topology
PY  - 2009
SP  - 99
EP  - 139
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.99/
DO  - 10.2140/gt.2009.13.99
ID  - GT_2009_13_1_a3
ER  - 
%0 Journal Article
%A Budney, Ryan
%A Cohen, Fred
%T On the homology of the space of knots
%J Geometry & topology
%D 2009
%P 99-139
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.99/
%R 10.2140/gt.2009.13.99
%F GT_2009_13_1_a3
Budney, Ryan; Cohen, Fred. On the homology of the space of knots. Geometry & topology, Tome 13 (2009) no. 1, pp. 99-139. doi : 10.2140/gt.2009.13.99. http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.99/

[1] D Altschüler, L Freidel, On universal Vassiliev invariants, Comm. Math. Phys. 170 (1995) 41

[2] D Bar-Natan, On the Vassiliev knot invariants, Topology 34 (1995) 423

[3] F Bonahon, L Siebenmann, Geometric splittings of knots and Conway's algebraic knots, unpublished preprint (1987)

[4] R Bott, C Taubes, On the self-linking of knots, J. Math. Phys. 35 (1994) 5247

[5] R Budney, The topology of knotspaces in dimension $3$

[6] R Budney, JSJ–decompositions of knot and link complements in $S^3$, Enseign. Math. $(2)$ 52 (2006) 319

[7] R Budney, Little cubes and long knots, Topology 46 (2007) 1

[8] R Budney, A family of embedding spaces, from: "Groups, homotopy and configuration spaces (Tokyo 2005)" (editors N Iwase, T Kohno, R Levi, D Tamaki, J Wu), Geometry and Topology Monographs 13 (2008) 41

[9] R Budney, J Conant, K P Scannell, D Sinha, New perspectives on self-linking, Adv. Math. 191 (2005) 78

[10] A S Cattaneo, P Cotta-Ramusino, R Longoni, Configuration spaces and Vassiliev classes in any dimension, Algebr. Geom. Topol. 2 (2002) 949

[11] V Chari, A Pressley, A guide to quantum groups, Cambridge University Press (1994)

[12] F R Cohen, T J Lada, J P May, The homology of iterated loop spaces, Lecture Notes in Mathematics, Vol. 533, Springer (1976)

[13] D Eisenbud, W Neumann, Three-dimensional link theory and invariants of plane curve singularities, Annals of Mathematics Studies, Princeton University Press (1985)

[14] T G Goodwillie, M Weiss, Embeddings from the point of view of immersion theory. II, Geom. Topol. 3 (1999) 103

[15] A Gramain, Sur le groupe fundamental de l'espace des noeuds, Ann. Inst. Fourier (Grenoble) 27 (1977) 29

[16] A Haefliger, Differential embeddings of $S^{n}$ in $S^{n+q}$ for $q \gt 2$, Ann. of Math. $(2)$ 83 (1966) 402

[17] A Hatcher, Spaces of Knots

[18] A Hatcher, Homeomorphisms of sufficiently large $P^{2}$–irreducible $3$–manifolds, Topology 15 (1976) 343

[19] A Hatcher, Topological Moduli Spaces of Knots (2002)

[20] N Jacobson, Lie algebras, Interscience Tracts in Pure and Applied Mathematics, No. 10, Interscience Publishers (a division of John Wiley Sons), New York-London (1962)

[21] T Kanenobu, Hyperbolic links with Brunnian properties, J. Math. Soc. Japan 38 (1986) 295

[22] A Kawauchi, A survey of knot theory, Birkhäuser Verlag (1996)

[23] T Kohno, Vassiliev invariants and de Rham complex on the space of knots, from: "Symplectic geometry and quantization (Sanda and Yokohama, 1993)", Contemp. Math. 179, Amer. Math. Soc. (1994) 123

[24] T Kohno, Loop spaces of configuration spaces and finite type invariants, from: "Invariants of knots and 3-manifolds (Kyoto, 2001)" (editors T Ohtsuki, e al), Geom. Topol. Monogr. 4 (2002) 143

[25] M Kontsevich, Feynman diagrams and low-dimensional topology, from: "First European Congress of Mathematics, Vol. II (Paris, 1992)", Progr. Math., Birkhäuser (1994) 97

[26] P Lambrechts, V Turchin, I Volic, The rational homotopy type of spaces of knots in codimension $\gt 2$, preprint

[27] C Lescop, On configuration space integrals for links, from: "Invariants of knots and 3–manifolds (Kyoto, 2001)" (editors T Ohtsuki, e al), Geom. Topol. Monogr. 4 (2002) 183

[28] S Manfredini, Some subgroups of Artin's braid group, Topology Appl. 78 (1997) 123

[29] J P May, The geometry of iterated loop spaces, Lectures Notes in Mathematics 271, Springer (1972)

[30] J W Milnor, J C Moore, On the structure of Hopf algebras, Ann. of Math. $(2)$ 81 (1965) 211

[31] R S Palais, Local triviality of the restriction map for embeddings, Comment. Math. Helv. 34 (1960) 305

[32] M Polyak, O Viro, On the Casson knot invariant, J. Knot Theory Ramifications 10 (2001) 711

[33] K Sakai, Non-trivalent graph cocycle and cohomology of the long knot space, Algebr. Geom. Topol. 8 (2008) 1499

[34] P Salvatore, Knots, operads, and double loop spaces, Int. Math. Res. Not. (2006) 22

[35] H Schubert, Die eindeutige Zerlegbarkeit eines Knotens in Primknoten, S-B Heidelberger Akad. Wiss. Math.-Nat. Kl. 1949 (1949) 57

[36] H Schubert, Knoten und Vollringe, Acta Math. 90 (1953) 131

[37] D Sinha, The topology of spaces of knots

[38] W P Thurston, Three-dimensional geometry and topology. Vol. 1, Princeton Mathematical Series 35, Princeton University Press (1997)

[39] V Tourtchine, On the other side of the bialgebra of chord diagrams, J. Knot Theory Ramifications 16 (2007) 575

[40] V A Vassiliev, Complements of discriminants of smooth maps: topology and applications, Translations of Mathematical Monographs 98, American Mathematical Society (1992)

[41] I Volić, Finite type knot invariants and the calculus of functors, Compos. Math. 142 (2006) 222

[42] T Watanabe, Configuration space integral for long $n$-knots and the Alexander polynomial, Algebr. Geom. Topol. 7 (2007) 47

[43] H Whitney, Differentiable manifolds, Ann. of Math. $(2)$ 37 (1936) 645

[44] W Wu, On the isotopy of $C^{r}$–manifolds of dimension $n$ in euclidean $(2n+1)$–space, Sci. Record $($N.S.$)$ 2 (1958) 271

Cité par Sources :