Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Consider the space of long knots in , . This is the space of knots as studied by V Vassiliev. Based on previous work [Budney: Topology 46 (2007) 1–27], [Cohen, Lada and May: Springer Lecture Notes 533 (1976)] it follows that the rational homology of is free Gerstenhaber–Poisson algebra. A partial description of a basis is given here. In addition, the mod– homology of this space is a free, restricted Gerstenhaber–Poisson algebra. Recursive application of this theorem allows us to deduce that there is –torsion of all orders in the integral homology of .
This leads to some natural questions about the homotopy type of the space of long knots in for , as well as consequences for the space of smooth embeddings of in and embeddings of in .
Budney, Ryan 1 ; Cohen, Fred 2
@article{GT_2009_13_1_a3, author = {Budney, Ryan and Cohen, Fred}, title = {On the homology of the space of knots}, journal = {Geometry & topology}, pages = {99--139}, publisher = {mathdoc}, volume = {13}, number = {1}, year = {2009}, doi = {10.2140/gt.2009.13.99}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.99/} }
Budney, Ryan; Cohen, Fred. On the homology of the space of knots. Geometry & topology, Tome 13 (2009) no. 1, pp. 99-139. doi : 10.2140/gt.2009.13.99. http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.99/
[1] On universal Vassiliev invariants, Comm. Math. Phys. 170 (1995) 41
, ,[2] On the Vassiliev knot invariants, Topology 34 (1995) 423
,[3] Geometric splittings of knots and Conway's algebraic knots, unpublished preprint (1987)
, ,[4] On the self-linking of knots, J. Math. Phys. 35 (1994) 5247
, ,[5] The topology of knotspaces in dimension $3$
,[6] JSJ–decompositions of knot and link complements in $S^3$, Enseign. Math. $(2)$ 52 (2006) 319
,[7] Little cubes and long knots, Topology 46 (2007) 1
,[8] A family of embedding spaces, from: "Groups, homotopy and configuration spaces (Tokyo 2005)" (editors N Iwase, T Kohno, R Levi, D Tamaki, J Wu), Geometry and Topology Monographs 13 (2008) 41
,[9] New perspectives on self-linking, Adv. Math. 191 (2005) 78
, , , ,[10] Configuration spaces and Vassiliev classes in any dimension, Algebr. Geom. Topol. 2 (2002) 949
, , ,[11] A guide to quantum groups, Cambridge University Press (1994)
, ,[12] The homology of iterated loop spaces, Lecture Notes in Mathematics, Vol. 533, Springer (1976)
, , ,[13] Three-dimensional link theory and invariants of plane curve singularities, Annals of Mathematics Studies, Princeton University Press (1985)
, ,[14] Embeddings from the point of view of immersion theory. II, Geom. Topol. 3 (1999) 103
, ,[15] Sur le groupe fundamental de l'espace des noeuds, Ann. Inst. Fourier (Grenoble) 27 (1977) 29
,[16] Differential embeddings of $S^{n}$ in $S^{n+q}$ for $q \gt 2$, Ann. of Math. $(2)$ 83 (1966) 402
,[17] Spaces of Knots
,[18] Homeomorphisms of sufficiently large $P^{2}$–irreducible $3$–manifolds, Topology 15 (1976) 343
,[19] Topological Moduli Spaces of Knots (2002)
,[20] Lie algebras, Interscience Tracts in Pure and Applied Mathematics, No. 10, Interscience Publishers (a division of John Wiley Sons), New York-London (1962)
,[21] Hyperbolic links with Brunnian properties, J. Math. Soc. Japan 38 (1986) 295
,[22] A survey of knot theory, Birkhäuser Verlag (1996)
,[23] Vassiliev invariants and de Rham complex on the space of knots, from: "Symplectic geometry and quantization (Sanda and Yokohama, 1993)", Contemp. Math. 179, Amer. Math. Soc. (1994) 123
,[24] Loop spaces of configuration spaces and finite type invariants, from: "Invariants of knots and 3-manifolds (Kyoto, 2001)" (editors T Ohtsuki, e al), Geom. Topol. Monogr. 4 (2002) 143
,[25] Feynman diagrams and low-dimensional topology, from: "First European Congress of Mathematics, Vol. II (Paris, 1992)", Progr. Math., Birkhäuser (1994) 97
,[26] The rational homotopy type of spaces of knots in codimension $\gt 2$, preprint
, , ,[27] On configuration space integrals for links, from: "Invariants of knots and 3–manifolds (Kyoto, 2001)" (editors T Ohtsuki, e al), Geom. Topol. Monogr. 4 (2002) 183
,[28] Some subgroups of Artin's braid group, Topology Appl. 78 (1997) 123
,[29] The geometry of iterated loop spaces, Lectures Notes in Mathematics 271, Springer (1972)
,[30] On the structure of Hopf algebras, Ann. of Math. $(2)$ 81 (1965) 211
, ,[31] Local triviality of the restriction map for embeddings, Comment. Math. Helv. 34 (1960) 305
,[32] On the Casson knot invariant, J. Knot Theory Ramifications 10 (2001) 711
, ,[33] Non-trivalent graph cocycle and cohomology of the long knot space, Algebr. Geom. Topol. 8 (2008) 1499
,[34] Knots, operads, and double loop spaces, Int. Math. Res. Not. (2006) 22
,[35] Die eindeutige Zerlegbarkeit eines Knotens in Primknoten, S-B Heidelberger Akad. Wiss. Math.-Nat. Kl. 1949 (1949) 57
,[36] Knoten und Vollringe, Acta Math. 90 (1953) 131
,[37] The topology of spaces of knots
,[38] Three-dimensional geometry and topology. Vol. 1, Princeton Mathematical Series 35, Princeton University Press (1997)
,[39] On the other side of the bialgebra of chord diagrams, J. Knot Theory Ramifications 16 (2007) 575
,[40] Complements of discriminants of smooth maps: topology and applications, Translations of Mathematical Monographs 98, American Mathematical Society (1992)
,[41] Finite type knot invariants and the calculus of functors, Compos. Math. 142 (2006) 222
,[42] Configuration space integral for long $n$-knots and the Alexander polynomial, Algebr. Geom. Topol. 7 (2007) 47
,[43] Differentiable manifolds, Ann. of Math. $(2)$ 37 (1936) 645
,[44] On the isotopy of $C^{r}$–manifolds of dimension $n$ in euclidean $(2n+1)$–space, Sci. Record $($N.S.$)$ 2 (1958) 271
,Cité par Sources :