A class of three-dimensional Ricci solitons
Geometry & topology, Tome 13 (2009) no. 2, pp. 979-1015.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We describe a three-dimensional autonomous dynamical system, orbits of which determine the metrics of three-dimensional Ricci solitons. In general these are not of gradient type. A careful analysis of the asymptotic behaviour of orbits is required to establish whether the corresponding solitons are complete or otherwise. New examples are found. Special cases include soliton structures on surfaces. In particular, a non-gradient steady soliton is found on an infinite cover of S2 { two points} whose metric factors then extends to a non-standard C2 metric on S2.

DOI : 10.2140/gt.2009.13.979
Keywords: Ricci soliton, semi-conformal map, dynamical system

Baird, Paul 1

1 Département de Mathématiques, Université de Bretagne Occidentale, 6 av. Victor Le Gorgeu – CS 93837, 29238 Brest Cedex, France
@article{GT_2009_13_2_a10,
     author = {Baird, Paul},
     title = {A class of three-dimensional {Ricci} solitons},
     journal = {Geometry & topology},
     pages = {979--1015},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2009},
     doi = {10.2140/gt.2009.13.979},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.979/}
}
TY  - JOUR
AU  - Baird, Paul
TI  - A class of three-dimensional Ricci solitons
JO  - Geometry & topology
PY  - 2009
SP  - 979
EP  - 1015
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.979/
DO  - 10.2140/gt.2009.13.979
ID  - GT_2009_13_2_a10
ER  - 
%0 Journal Article
%A Baird, Paul
%T A class of three-dimensional Ricci solitons
%J Geometry & topology
%D 2009
%P 979-1015
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.979/
%R 10.2140/gt.2009.13.979
%F GT_2009_13_2_a10
Baird, Paul. A class of three-dimensional Ricci solitons. Geometry & topology, Tome 13 (2009) no. 2, pp. 979-1015. doi : 10.2140/gt.2009.13.979. http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.979/

[1] P Baird, L Danielo, Three-dimensional Ricci solitons which project to surfaces, J. Reine Angew. Math. 608 (2007) 65

[2] R L Bryant, Ricci flow solitons in dimension three with $\SO (3)$–symmetries, preprint, Duke Univ. (2005)

[3] B Chow, S C Chu, D Glickenstein, C Guenther, J Isenberg, T Ivey, D Knopf, P Lu, F Luo, L Ni, The Ricci flow: techniques and applications., Mathematical Surveys and Monographs 135, Amer. Math. Soc. (2007)

[4] B Chow, D Knopf, The Ricci flow: an introduction, Mathematical Surveys and Monographs 110, Amer. Math. Soc. (2004)

[5] J Dieudonné, Foundations of modern analysis, Academic Press (1969)

[6] C Guenther, J Isenberg, D Knopf, Stability of the Ricci flow at Ricci-flat metrics, Comm. Anal. Geom. 10 (2002) 741

[7] C Guenther, J Isenberg, D Knopf, Stability of Ricci nilsolitons, preprint (2006)

[8] R S Hamilton, The Ricci flow on surfaces, from: "Mathematics and general relativity (Santa Cruz, CA, 1986)", Contemp. Math. 71, Amer. Math. Soc. (1988) 237

[9] T Ivey, Ricci solitons on compact three-manifolds, Differential Geom. Appl. 3 (1993) 301

[10] J Lott, On the long-time behavior of type-III Ricci flow solutions, Math. Ann. 339 (2007) 627

[11] G Perelman, The entropy formula for the Ricci flow and its geometric applications

[12] N Sesum, Linear and dynamical stability of Ricci flat metrics, preprint, Courant Institute

Cité par Sources :