Novikov-symplectic cohomology and exact Lagrangian embeddings
Geometry & topology, Tome 13 (2009) no. 2, pp. 943-978.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let N be a closed manifold satisfying a mild homotopy assumption. Then for any exact Lagrangian L TN the map π2(L) π2(N) has finite index. The homotopy assumption is either that N is simply connected, or more generally that πm(N) is finitely generated for each m 2. The manifolds need not be orientable, and we make no assumption on the Maslov class of L.

We construct the Novikov homology theory for symplectic cohomology, denoted SH(M;L¯α), and we show that Viterbo functoriality holds. We prove that the symplectic cohomology SH(TN;L¯α) is isomorphic to the Novikov homology of the free loopspace. Given the homotopy assumption on N, we show that this Novikov homology vanishes when α H1(0N) is the transgression of a nonzero class in H2(Ñ). Combining these results yields the above obstructions to the existence of L.

DOI : 10.2140/gt.2009.13.943
Keywords: symplectic homology, Novikov homology, exact Lagrangian

Ritter, Alexander F 1

1 Department of Mathematics, MIT, Cambridge, MA 02139, USA
@article{GT_2009_13_2_a9,
     author = {Ritter, Alexander F},
     title = {Novikov-symplectic cohomology and exact {Lagrangian} embeddings},
     journal = {Geometry & topology},
     pages = {943--978},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2009},
     doi = {10.2140/gt.2009.13.943},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.943/}
}
TY  - JOUR
AU  - Ritter, Alexander F
TI  - Novikov-symplectic cohomology and exact Lagrangian embeddings
JO  - Geometry & topology
PY  - 2009
SP  - 943
EP  - 978
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.943/
DO  - 10.2140/gt.2009.13.943
ID  - GT_2009_13_2_a9
ER  - 
%0 Journal Article
%A Ritter, Alexander F
%T Novikov-symplectic cohomology and exact Lagrangian embeddings
%J Geometry & topology
%D 2009
%P 943-978
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.943/
%R 10.2140/gt.2009.13.943
%F GT_2009_13_2_a9
Ritter, Alexander F. Novikov-symplectic cohomology and exact Lagrangian embeddings. Geometry & topology, Tome 13 (2009) no. 2, pp. 943-978. doi : 10.2140/gt.2009.13.943. http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.943/

[1] A Abbondandolo, M Schwarz, On the Floer homology of cotangent bundles, Comm. Pure Appl. Math. 59 (2006) 254

[2] M Farber, Topology of closed one-forms, Math. Surveys and Monogr. 108, Amer. Math. Soc. (2004)

[3] K Fukaya, P Seidel, I Smith, Exact Lagrangian submanifolds in simply connected cotangent bundles, Invent. Math. 172 (2008) 1

[4] H Matsumura, Commutative ring theory, Cambridge Studies in Advanced Math. 8, Cambridge University Press (1986)

[5] J W Milnor, Infinite cyclic coverings, from: "Conference on the Topology of Manifolds (Michigan State Univ., E. Lansing, Mich., 1967)", Prindle, Weber Schmidt (1968) 115

[6] D Nadler, Microlocal branes are constructible sheaves

[7] D A Salamon, Lectures on Floer homology, from: "Symplectic geometry and topology (Park City, UT, 1997)", IAS/Park City Math. Ser. 7, Amer. Math. Soc. (1999) 143

[8] D A Salamon, J Weber, Floer homology and the heat flow, Geom. Funct. Anal. 16 (2006) 1050

[9] P Seidel, A biased view of symplectic cohomology, Current Developments in Math. 2006 (2008) 211

[10] E H Spanier, Algebraic topology, Springer (1981)

[11] C Viterbo, Exact Lagrange submanifolds, periodic orbits and the cohomology of free loop spaces, J. Differential Geom. 47 (1997) 420

[12] C Viterbo, Functors and computations in Floer homology with applications. I, Geom. Funct. Anal. 9 (1999) 985

[13] C Viterbo, Functors and computations in Floer homology with applications. II, preprint (2006)

[14] G W Whitehead, Elements of homotopy theory, Graduate Texts in Math. 61, Springer (1978)

Cité par Sources :