The Weinstein conjecture for stable Hamiltonian structures
Geometry & topology, Tome 13 (2009) no. 2, pp. 901-941.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We use the equivalence between embedded contact homology and Seiberg–Witten Floer homology to obtain the following improvements on the Weinstein conjecture. Let Y be a closed oriented connected 3–manifold with a stable Hamiltonian structure, and let R denote the associated Reeb vector field on Y . We prove that if Y is not a T2–bundle over S1, then R has a closed orbit. Along the way we prove that if Y is a closed oriented connected 3–manifold with a contact form such that all Reeb orbits are nondegenerate and elliptic, then Y is a lens space. Related arguments show that if Y is a closed oriented 3–manifold with a contact form such that all Reeb orbits are nondegenerate, and if Y is not a lens space, then there exist at least three distinct embedded Reeb orbits.

DOI : 10.2140/gt.2009.13.901
Keywords: dynamical system, Seiberg–Witten, Floer homology

Hutchings, Michael 1 ; Taubes, Clifford Henry 2

1 Mathematics Department, 970 Evans Hall, University of California, Berkeley, CA 94720, USA
2 Mathematics Department, Harvard University, Cambridge, MA 02138, USA
@article{GT_2009_13_2_a8,
     author = {Hutchings, Michael and Taubes, Clifford Henry},
     title = {The {Weinstein} conjecture for stable {Hamiltonian} structures},
     journal = {Geometry & topology},
     pages = {901--941},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2009},
     doi = {10.2140/gt.2009.13.901},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.901/}
}
TY  - JOUR
AU  - Hutchings, Michael
AU  - Taubes, Clifford Henry
TI  - The Weinstein conjecture for stable Hamiltonian structures
JO  - Geometry & topology
PY  - 2009
SP  - 901
EP  - 941
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.901/
DO  - 10.2140/gt.2009.13.901
ID  - GT_2009_13_2_a8
ER  - 
%0 Journal Article
%A Hutchings, Michael
%A Taubes, Clifford Henry
%T The Weinstein conjecture for stable Hamiltonian structures
%J Geometry & topology
%D 2009
%P 901-941
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.901/
%R 10.2140/gt.2009.13.901
%F GT_2009_13_2_a8
Hutchings, Michael; Taubes, Clifford Henry. The Weinstein conjecture for stable Hamiltonian structures. Geometry & topology, Tome 13 (2009) no. 2, pp. 901-941. doi : 10.2140/gt.2009.13.901. http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.901/

[1] C Abbas, K Cieliebak, H Hofer, The Weinstein conjecture for planar contact structures in dimension three, Comment. Math. Helv. 80 (2005) 771

[2] F Bourgeois, K Cieliebak, T Ekholm, A note on Reeb dynamics on the tight $3$–sphere, J. Mod. Dyn. 1 (2007) 597

[3] F Bourgeois, Y Eliashberg, H Hofer, K Wysocki, E Zehnder, Compactness results in symplectic field theory, Geom. Topol. 7 (2003) 799

[4] K Cieliebak, K Mohnke, Compactness for punctured holomorphic curves, J. Symplectic Geom. 3 (2005) 589

[5] V Colin, K Honda, Reeb vector fields and open book decompositions

[6] D L Dragnev, Fredholm theory and transversality for noncompact pseudoholomorphic maps in symplectizations, Comm. Pure Appl. Math. 57 (2004) 726

[7] H Geiges, An introduction to contact topology, Cambridge Studies in Advanced Math. 109, Cambridge University Press (2008)

[8] H Hofer, Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three, Invent. Math. 114 (1993) 515

[9] H Hofer, K Wysocki, E Zehnder, Properties of pseudoholomorphic curves in symplectisations. I. Asymptotics, Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996) 337

[10] H Hofer, K Wysocki, E Zehnder, Properties of pseudoholomorphic curves in symplectisations. II. Embedding controls and algebraic invariants, Geom. Funct. Anal. 5 (1995) 270

[11] H Hofer, K Wysocki, E Zehnder, Finite energy foliations of tight three-spheres and Hamiltonian dynamics, Ann. of Math. $(2)$ 157 (2003) 125

[12] H Hofer, E Zehnder, Symplectic invariants and Hamiltonian dynamics, Birkhäuser Verlag (1994)

[13] M Hutchings, An index inequality for embedded pseudoholomorphic curves in symplectizations, J. Eur. Math. Soc. 4 (2002) 313

[14] M Hutchings, The embedded contact homology index revisited, to appear in the Yashafest proceedings

[15] M Hutchings, Y J Lee, Circle-valued Morse theory, Reidemeister torsion, and Seiberg-Witten invariants of $3$–manifolds, Topology 38 (1999) 861

[16] M Hutchings, M Sullivan, Rounding corners of polygons and the embedded contact homology of $T^3$, Geom. Topol. 10 (2006) 169

[17] M Hutchings, C H Taubes, Gluing pseudoholomorphic curves along branched covered cylinders. I, J. Symplectic Geom. 5 (2007) 43

[18] M Hutchings, C H Taubes, Gluing pseudoholomorphic curves along branched covered cylinders. II

[19] P Kronheimer, T Mrowka, Monopoles and three-manifolds, New Math. Monogr. 10, Cambridge University Press (2007)

[20] A Rechtman, Use and disuse of plugs in foliations, preprint (2008)

[21] R Siefring, Intersection theory of punctured pseudoholomorphic curves, in preparation

[22] R Siefring, The relative asymptotic behavior of pseudoholomorphic half-cylinders, to appear in Comm. Pure Appl. Math.

[23] C H Taubes, The Seiberg–Witten equations and the Weinstein conjecture, Geom. Topol. 11 (2007) 2117

[24] C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology I–IV, preprints (2008)

[25] C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology V, in preparation

[26] C Wendl, Punctured holomorphic curves with boundary in $3$–manifolds: Fredholm theory and embeddedness, in preparation

Cité par Sources :