Global fixed points for centralizers and Morita’s Theorem
Geometry & topology, Tome 13 (2009) no. 1, pp. 87-98.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove a global fixed point theorem for the centralizer of a homeomorphism of the two-dimensional disk D that has attractor–repeller dynamics on the boundary with at least two attractors and two repellers. As one application we give an elementary proof of Morita’s Theorem, that the mapping class group of a closed surface S of genus g does not lift to the group of C2 diffeomorphisms of S and we improve the lower bound for g from 5 to 3.

DOI : 10.2140/gt.2009.13.87
Keywords: mapping class group, pseudo-Anosov, global fixed point, lifting problem

Franks, John 1 ; Handel, Michael 2

1 Department of Mathematics, Northwestern University, Evanston, IL 60208
2 Department of Mathematics, Lehman College, Bronx, NY 10468
@article{GT_2009_13_1_a2,
     author = {Franks, John and Handel, Michael},
     title = {Global fixed points for centralizers and {Morita{\textquoteright}s} {Theorem}},
     journal = {Geometry & topology},
     pages = {87--98},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2009},
     doi = {10.2140/gt.2009.13.87},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.87/}
}
TY  - JOUR
AU  - Franks, John
AU  - Handel, Michael
TI  - Global fixed points for centralizers and Morita’s Theorem
JO  - Geometry & topology
PY  - 2009
SP  - 87
EP  - 98
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.87/
DO  - 10.2140/gt.2009.13.87
ID  - GT_2009_13_1_a2
ER  - 
%0 Journal Article
%A Franks, John
%A Handel, Michael
%T Global fixed points for centralizers and Morita’s Theorem
%J Geometry & topology
%D 2009
%P 87-98
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.87/
%R 10.2140/gt.2009.13.87
%F GT_2009_13_1_a2
Franks, John; Handel, Michael. Global fixed points for centralizers and Morita’s Theorem. Geometry & topology, Tome 13 (2009) no. 1, pp. 87-98. doi : 10.2140/gt.2009.13.87. http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.87/

[1] C Bonatti, Un point fixe commun pour des difféomorphismes commutants de $S^2$, Ann. of Math. $(2)$ 129 (1989) 61

[2] C Bonatti, Difféomorphismes commutants des surfaces et stabilité des fibrations en tores, Topology 29 (1990) 101

[3] D Calegari, Circular groups, planar groups, and the Euler class, from: "Proceedings of the Casson Fest" (editors C Gordon, Y Rieck), Geom. Topol. Monogr. 7 (2004) 431

[4] A J Casson, S A Bleiler, Automorphisms of surfaces after Nielsen and Thurston, London Math. Soc. Student Texts 9, Cambridge University Press (1988)

[5] B Farb, Some problems on mapping class groups and moduli space, from: "Problems on mapping class groups and related topics", Proc. Sympos. Pure Math. 74, Amer. Math. Soc. (2006) 11

[6] A. Fathi, F. Laudenbach, V. Poenaru, E Al, Travaux de Thurston sur les surfaces, Séminaire Orsay, Astérisque 66, Société Mathématique de France (1979) 284

[7] J Franks, Distortion in groups of circle and surface diffeomorphisms, from: "Dynamique des difféomorphismes conservatifs des surfaces: un point de vue topologique", Panor. Synthèses 21, Soc. Math. France (2006) 35

[8] J Franks, M Handel, Distortion elements in group actions on surfaces, Duke Math. J. 131 (2006) 441

[9] J Franks, M Handel, K Parwani, Fixed points of abelian actions, J. Mod. Dyn. 1 (2007) 443

[10] J Franks, M Handel, K Parwani, Fixed points of abelian actions on $S^2$, Ergodic Theory Dynam. Systems 27 (2007) 1557

[11] M Handel, Commuting homeomorphisms of $S^2$, Topology 31 (1992) 293

[12] M Handel, A fixed-point theorem for planar homeomorphisms, Topology 38 (1999) 235

[13] M Handel, W P Thurston, New proofs of some results of Nielsen, Adv. in Math. 56 (1985) 173

[14] S P Kerckhoff, The Nielsen realization problem, Ann. of Math. $(2)$ 117 (1983) 235

[15] M Korkmaz, Low-dimensional homology groups of mapping class groups: a survey, Turkish J. Math. 26 (2002) 101

[16] V Markovic, Realization of the mapping class group by homeomorphisms, Invent. Math. 168 (2007) 523

[17] J N Mather, Topological proofs of some purely topological consequences of Carathéodory's theory of prime ends, from: "Selected studies: physics-astrophysics, mathematics, history of science", North-Holland (1982) 225

[18] S Morita, Characteristic classes of surface bundles, Invent. Math. 90 (1987) 551

[19] S Morita, Geometry of characteristic classes, Translations of Math. Monogr. 199, Amer. Math. Soc. (2001)

[20] W P Thurston, A generalization of the Reeb stability theorem, Topology 13 (1974) 347

Cité par Sources :