Symplectic structures on right-angled Artin groups: Between the mapping class group and the symplectic group
Geometry & topology, Tome 13 (2009) no. 2, pp. 857-899.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We define a family of groups that include the mapping class group of a genus g surface with one boundary component and the integral symplectic group Sp(2g, ). We then prove that these groups are finitely generated. These groups, which we call mapping class groups over graphs, are indexed over labeled simplicial graphs with 2g vertices. The mapping class group over the graph Γ is defined to be a subgroup of the automorphism group of the right-angled Artin group AΓ of Γ. We also prove that the kernel of AutAΓ AutH1(AΓ) is finitely generated, generalizing a theorem of Magnus.

DOI : 10.2140/gt.2009.13.857
Keywords: peak reduction, symplectic structure, finite generation, right-angled Artin group

Day, Matthew B 1

1 Department of Mathematics, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91101, USA
@article{GT_2009_13_2_a7,
     author = {Day, Matthew B},
     title = {Symplectic structures on right-angled {Artin} groups: {Between} the mapping class group and the symplectic group},
     journal = {Geometry & topology},
     pages = {857--899},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2009},
     doi = {10.2140/gt.2009.13.857},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.857/}
}
TY  - JOUR
AU  - Day, Matthew B
TI  - Symplectic structures on right-angled Artin groups: Between the mapping class group and the symplectic group
JO  - Geometry & topology
PY  - 2009
SP  - 857
EP  - 899
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.857/
DO  - 10.2140/gt.2009.13.857
ID  - GT_2009_13_2_a7
ER  - 
%0 Journal Article
%A Day, Matthew B
%T Symplectic structures on right-angled Artin groups: Between the mapping class group and the symplectic group
%J Geometry & topology
%D 2009
%P 857-899
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.857/
%R 10.2140/gt.2009.13.857
%F GT_2009_13_2_a7
Day, Matthew B. Symplectic structures on right-angled Artin groups: Between the mapping class group and the symplectic group. Geometry & topology, Tome 13 (2009) no. 2, pp. 857-899. doi : 10.2140/gt.2009.13.857. http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.857/

[1] M Bestvina, K U Bux, D Margalit, Dimension of the Torelli group for $\mathrm{Out}(F_n)$, Invent. Math. 170 (2007) 1

[2] K S Brown, Cohomology of groups, Graduate Texts in Math. 87, Springer (1982)

[3] R Charney, An introduction to right-angled Artin groups, Geom. Dedicata 125 (2007) 141

[4] R Charney, J Crisp, K Vogtmann, Automorphisms of $2$–dimensional right-angled Artin groups, Geom. Topol. 11 (2007) 2227

[5] R Charney, K Vogtmann, Finiteness properties of automorphism groups of right-angled Artin groups, to appear in Bull. London. Math. Soc.

[6] M B Day, Peak reduction and presentations for automorphism groups of right-angled Artin groups, Geom. Topol. 13 (2009) 817

[7] B Farb, D Margalit, A primer on mapping class groups, Book draft

[8] N Kawazumi, Cohomological aspects of Magnus expansions

[9] M R Laurence, A generating set for the automorphism group of a graph group, J. London Math. Soc. $(2)$ 52 (1995) 318

[10] R C Lyndon, P E Schupp, Combinatorial group theory, Classics in Math., Springer (2001)

[11] W Magnus, Über $n$–dimensionale Gittertransformationen, Acta Math. 64 (1935) 353

[12] W Magnus, A Karrass, D Solitar, Combinatorial group theory. Presentations of groups in terms of generators and relations, Dover (2004)

[13] J Mccool, Some finitely presented subgroups of the automorphism group of a free group, J. Algebra 35 (1975) 205

[14] J Mccool, Generating the mapping class group (an algebraic approach), Publ. Mat. 40 (1996) 457

[15] R C Penner, The moduli space of a punctured surface and perturbative series, Bull. Amer. Math. Soc. $($N.S.$)$ 15 (1986) 73

[16] A Pettet, The Johnson homomorphism and the second cohomology of $\mathrm{IA}_n$, Algebr. Geom. Topol. 5 (2005) 725

[17] J P Serre, Lie algebras and Lie groups, Lecture Notes in Math. 1500, Springer (2006)

[18] H Servatius, Automorphisms of graph groups, J. Algebra 126 (1989) 34

[19] L Vanwyk, Graph groups are biautomatic, J. Pure Appl. Algebra 94 (1994) 341

[20] H Zieschang, Über Automorphismen ebener diskontinuierlicher Gruppen, Math. Ann. 166 (1966) 148

Cité par Sources :