Peak reduction and finite presentations for automorphism groups of right-angled Artin groups
Geometry & topology, Tome 13 (2009) no. 2, pp. 817-855.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We generalize the peak reduction algorithm (Whitehead’s theorem) for free groups to a theorem about a general right-angled Artin group AΓ. As an application, we find a finite presentation for the automorphism group AutAΓ that generalizes McCool’s presentation for the automorphism group of a finite rank free group. We also consider a stronger generalization of peak reduction, giving a counterexample and proving a special case.

DOI : 10.2140/gt.2009.13.817
Keywords: peak reduction, right-angled Artin group, finite presentation

Day, Matthew B 1

1 Department of Mathematics, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91101, USA
@article{GT_2009_13_2_a6,
     author = {Day, Matthew B},
     title = {Peak reduction and finite presentations for automorphism groups of right-angled {Artin} groups},
     journal = {Geometry & topology},
     pages = {817--855},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2009},
     doi = {10.2140/gt.2009.13.817},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.817/}
}
TY  - JOUR
AU  - Day, Matthew B
TI  - Peak reduction and finite presentations for automorphism groups of right-angled Artin groups
JO  - Geometry & topology
PY  - 2009
SP  - 817
EP  - 855
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.817/
DO  - 10.2140/gt.2009.13.817
ID  - GT_2009_13_2_a6
ER  - 
%0 Journal Article
%A Day, Matthew B
%T Peak reduction and finite presentations for automorphism groups of right-angled Artin groups
%J Geometry & topology
%D 2009
%P 817-855
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.817/
%R 10.2140/gt.2009.13.817
%F GT_2009_13_2_a6
Day, Matthew B. Peak reduction and finite presentations for automorphism groups of right-angled Artin groups. Geometry & topology, Tome 13 (2009) no. 2, pp. 817-855. doi : 10.2140/gt.2009.13.817. http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.817/

[1] K U Bux, R Charney, K Vogtmann, Automorphisms of two-dimensional RAAGs and partially symmetric automorphisms of free groups, to appear in Groups Geom. Dyn.

[2] R Charney, J Crisp, K Vogtmann, Automorphisms of $2$–dimensional right-angled Artin groups, Geom. Topol. 11 (2007) 2227

[3] M Culler, K Vogtmann, Moduli of graphs and automorphisms of free groups, Invent. Math. 84 (1986) 91

[4] M B Day, Symplectic structures on right-angled Artin groups: Between the mapping class group and the symplectic group, Geom. Topol. 13 (2009) 857

[5] P J Higgins, R C Lyndon, Equivalence of elements under automorphisms of a free group, J. London Math. Soc. $(2)$ 8 (1974) 254

[6] M R Laurence, A generating set for the automorphism group of a graph group, J. London Math. Soc. $(2)$ 52 (1995) 318

[7] R C Lyndon, P E Schupp, Combinatorial group theory, Classics in Math., Springer (2001)

[8] J Mccool, A presentation for the automorphism group of a free group of finite rank, J. London Math. Soc. $(2)$ 8 (1974) 259

[9] J Mccool, Some finitely presented subgroups of the automorphism group of a free group, J. Algebra 35 (1975) 205

[10] J Milnor, Introduction to algebraic $K$–theory, Annals of Math. Studies 72, Princeton University Press (1971)

[11] E S Rapaport, On free groups and their automorphisms, Acta Math. 99 (1958) 139

[12] J P Serre, Trees, Springer (1980)

[13] H Servatius, Automorphisms of graph groups, J. Algebra 126 (1989) 34

[14] J H C Whitehead, On equivalent sets of elements in a free group, Ann. of Math. $(2)$ 37 (1936) 782

Cité par Sources :