A simply connected surface of general type with pg = 0 and K2 = 3
Geometry & topology, Tome 13 (2009) no. 2, pp. 743-767.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Motivated by a recent result of Y Lee and the second author [Invent. Math. 170 (2007) 483-505], we construct a simply connected minimal complex surface of general type with pg = 0 and K2 = 3 using a rational blow-down surgery and –Gorenstein smoothing theory. In a similar fashion, we also construct a new simply connected symplectic 4–manifold with b2+ = 1 and K2 = 4.

DOI : 10.2140/gt.2009.13.743
Keywords: $\mathbb{Q}$-Gorenstein smoothing, rational blow-down, surface of general type

Park, Heesang 1 ; Park, Jongil 1 ; Shin, Dongsoo 2

1 Department of Mathematical Sciences, Seoul National University, San 56-1, Sillim-dong, Gwanak-gu, Seoul 151-747, Korea
2 Department of Mathematics, Pohang University of Science and Technology, San 31, Hyoja-dong, Nam-gu, Pohang, Gyungbuk 790-784, Korea
@article{GT_2009_13_2_a4,
     author = {Park, Heesang and Park, Jongil and Shin, Dongsoo},
     title = {A simply connected surface of general type with pg = 0 and {K2} = 3},
     journal = {Geometry & topology},
     pages = {743--767},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2009},
     doi = {10.2140/gt.2009.13.743},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.743/}
}
TY  - JOUR
AU  - Park, Heesang
AU  - Park, Jongil
AU  - Shin, Dongsoo
TI  - A simply connected surface of general type with pg = 0 and K2 = 3
JO  - Geometry & topology
PY  - 2009
SP  - 743
EP  - 767
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.743/
DO  - 10.2140/gt.2009.13.743
ID  - GT_2009_13_2_a4
ER  - 
%0 Journal Article
%A Park, Heesang
%A Park, Jongil
%A Shin, Dongsoo
%T A simply connected surface of general type with pg = 0 and K2 = 3
%J Geometry & topology
%D 2009
%P 743-767
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.743/
%R 10.2140/gt.2009.13.743
%F GT_2009_13_2_a4
Park, Heesang; Park, Jongil; Shin, Dongsoo. A simply connected surface of general type with pg = 0 and K2 = 3. Geometry & topology, Tome 13 (2009) no. 2, pp. 743-767. doi : 10.2140/gt.2009.13.743. http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.743/

[1] A Akhmedov, Small exotic $4$–manifolds

[2] M Artin, Some numerical criteria for contractability of curves on algebraic surfaces, Amer. J. Math. 84 (1962) 485

[3] S Baldridge, P Kirk, Constructions of small symplectic $4$–manifolds using Luttinger surgery

[4] R Barlow, A simply connected surface of general type with $p_g=0$, Invent. Math. 79 (1985) 293

[5] W P Barth, K Hulek, C A M Peters, A Van De Ven, Compact complex surfaces, Ergebnisse series 3: Modern Surveys in Math. 4, Springer (2004)

[6] R Fintushel, R J Stern, Rational blowdowns of smooth $4$–manifolds, J. Differential Geom. 46 (1997) 181

[7] H Flenner, M Zaidenberg, $\mathbf Q$–acyclic surfaces and their deformations, from: "Classification of algebraic varieties (L'Aquila, 1992)" (editors C Ciliberto, E L Livorni, A J Sommese), Contemp. Math. 162, Amer. Math. Soc. (1994) 143

[8] J Kollár, N I Shepherd-Barron, Threefolds and deformations of surface singularities, Invent. Math. 91 (1988) 299

[9] Y Lee, J Park, A simply connected surface of general type with $p_g=0$ and $K^2=2$, Invent. Math. 170 (2007) 483

[10] S Lichtenbaum, M Schlessinger, The cotangent complex of a morphism, Trans. Amer. Math. Soc. 128 (1967) 41

[11] E Looijenga, J Wahl, Quadratic functions and smoothing surface singularities, Topology 25 (1986) 261

[12] M Manetti, Normal degenerations of the complex projective plane, J. Reine Angew. Math. 419 (1991) 89

[13] D Mumford, The topology of normal singularities of an algebraic surface and a criterion for simplicity, Inst. Hautes Études Sci. Publ. Math. (1961) 5

[14] N Nakayama, Zariski-decomposition and abundance, MSJ Memoirs 14, Math. Soc. of Japan (2004)

[15] P Ozsváth, Z Szabó, On Park's exotic smooth four-manifolds, from: "Geometry and topology of manifolds" (editors H U Boden, I Hambleton, A J Nicas, B D Park), Fields Inst. Commun. 47, Amer. Math. Soc. (2005) 253

[16] V P Palamodov, Deformations of complex spaces, Uspehi Mat. Nauk 31 (1976) 129

[17] J Park, Seiberg–Witten invariants of generalised rational blow-downs, Bull. Austral. Math. Soc. 56 (1997) 363

[18] J Park, Simply connected symplectic $4$–manifolds with $b^+_2=1$ and $c^2_1=2$, Invent. Math. 159 (2005) 657

[19] U Persson, Configurations of Kodaira fibers on rational elliptic surfaces, Math. Z. 205 (1990) 1

[20] A I Stipsicz, Z Szabó, An exotic smooth structure on $\mathbb C\mathbb P^2\#6\overline\mathbb{C\mathbb P^2}$, Geom. Topol. 9 (2005) 813

[21] M Symington, Symplectic rational blowdowns, J. Differential Geom. 50 (1998) 505

[22] M Symington, Generalized symplectic rational blowdowns, Algebr. Geom. Topol. 1 (2001) 503

[23] J Wahl, Elliptic deformations of minimally elliptic singularities, Math. Ann. 253 (1980) 241

[24] J Wahl, Smoothings of normal surface singularities, Topology 20 (1981) 219

Cité par Sources :