Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Motivated by a recent result of Y Lee and the second author [Invent. Math. 170 (2007) 483-505], we construct a simply connected minimal complex surface of general type with and using a rational blow-down surgery and –Gorenstein smoothing theory. In a similar fashion, we also construct a new simply connected symplectic –manifold with and .
Park, Heesang 1 ; Park, Jongil 1 ; Shin, Dongsoo 2
@article{GT_2009_13_2_a4, author = {Park, Heesang and Park, Jongil and Shin, Dongsoo}, title = {A simply connected surface of general type with pg = 0 and {K2} = 3}, journal = {Geometry & topology}, pages = {743--767}, publisher = {mathdoc}, volume = {13}, number = {2}, year = {2009}, doi = {10.2140/gt.2009.13.743}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.743/} }
TY - JOUR AU - Park, Heesang AU - Park, Jongil AU - Shin, Dongsoo TI - A simply connected surface of general type with pg = 0 and K2 = 3 JO - Geometry & topology PY - 2009 SP - 743 EP - 767 VL - 13 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.743/ DO - 10.2140/gt.2009.13.743 ID - GT_2009_13_2_a4 ER -
%0 Journal Article %A Park, Heesang %A Park, Jongil %A Shin, Dongsoo %T A simply connected surface of general type with pg = 0 and K2 = 3 %J Geometry & topology %D 2009 %P 743-767 %V 13 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.743/ %R 10.2140/gt.2009.13.743 %F GT_2009_13_2_a4
Park, Heesang; Park, Jongil; Shin, Dongsoo. A simply connected surface of general type with pg = 0 and K2 = 3. Geometry & topology, Tome 13 (2009) no. 2, pp. 743-767. doi : 10.2140/gt.2009.13.743. http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.743/
[1] Small exotic $4$–manifolds
,[2] Some numerical criteria for contractability of curves on algebraic surfaces, Amer. J. Math. 84 (1962) 485
,[3] Constructions of small symplectic $4$–manifolds using Luttinger surgery
, ,[4] A simply connected surface of general type with $p_g=0$, Invent. Math. 79 (1985) 293
,[5] Compact complex surfaces, Ergebnisse series 3: Modern Surveys in Math. 4, Springer (2004)
, , , ,[6] Rational blowdowns of smooth $4$–manifolds, J. Differential Geom. 46 (1997) 181
, ,[7] $\mathbf Q$–acyclic surfaces and their deformations, from: "Classification of algebraic varieties (L'Aquila, 1992)" (editors C Ciliberto, E L Livorni, A J Sommese), Contemp. Math. 162, Amer. Math. Soc. (1994) 143
, ,[8] Threefolds and deformations of surface singularities, Invent. Math. 91 (1988) 299
, ,[9] A simply connected surface of general type with $p_g=0$ and $K^2=2$, Invent. Math. 170 (2007) 483
, ,[10] The cotangent complex of a morphism, Trans. Amer. Math. Soc. 128 (1967) 41
, ,[11] Quadratic functions and smoothing surface singularities, Topology 25 (1986) 261
, ,[12] Normal degenerations of the complex projective plane, J. Reine Angew. Math. 419 (1991) 89
,[13] The topology of normal singularities of an algebraic surface and a criterion for simplicity, Inst. Hautes Études Sci. Publ. Math. (1961) 5
,[14] Zariski-decomposition and abundance, MSJ Memoirs 14, Math. Soc. of Japan (2004)
,[15] On Park's exotic smooth four-manifolds, from: "Geometry and topology of manifolds" (editors H U Boden, I Hambleton, A J Nicas, B D Park), Fields Inst. Commun. 47, Amer. Math. Soc. (2005) 253
, ,[16] Deformations of complex spaces, Uspehi Mat. Nauk 31 (1976) 129
,[17] Seiberg–Witten invariants of generalised rational blow-downs, Bull. Austral. Math. Soc. 56 (1997) 363
,[18] Simply connected symplectic $4$–manifolds with $b^+_2=1$ and $c^2_1=2$, Invent. Math. 159 (2005) 657
,[19] Configurations of Kodaira fibers on rational elliptic surfaces, Math. Z. 205 (1990) 1
,[20] An exotic smooth structure on $\mathbb C\mathbb P^2\#6\overline\mathbb{C\mathbb P^2}$, Geom. Topol. 9 (2005) 813
, ,[21] Symplectic rational blowdowns, J. Differential Geom. 50 (1998) 505
,[22] Generalized symplectic rational blowdowns, Algebr. Geom. Topol. 1 (2001) 503
,[23] Elliptic deformations of minimally elliptic singularities, Math. Ann. 253 (1980) 241
,[24] Smoothings of normal surface singularities, Topology 20 (1981) 219
,Cité par Sources :