Flats and the flat torus theorem in systolic spaces
Geometry & topology, Tome 13 (2009) no. 2, pp. 661-698.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove the Systolic Flat Torus Theorem, which completes the list of basic properties that are simultaneously true for systolic geometry and CAT(0) geometry.

We develop the theory of minimal surfaces in systolic complexes, which is a powerful tool in studying systolic complexes. We prove that flat minimal surfaces in a systolic complex are almost isometrically embedded and introduce a local condition for flat surfaces which implies minimality. We also prove that minimal surfaces are stable under small deformations of their boundaries.

DOI : 10.2140/gt.2009.13.661
Keywords: systolic complex, systolic group, minimal surface, flat, flat torus

Elsner, Tomasz 1

1 Department of Mathematics, The Ohio State University, 231 W 18th Ave, Columbus, OH 43210, USA, and Instytut Matematyczny, Uniwersytet Wrocławski, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland
@article{GT_2009_13_2_a1,
     author = {Elsner, Tomasz},
     title = {Flats and the flat torus theorem in systolic spaces},
     journal = {Geometry & topology},
     pages = {661--698},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2009},
     doi = {10.2140/gt.2009.13.661},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.661/}
}
TY  - JOUR
AU  - Elsner, Tomasz
TI  - Flats and the flat torus theorem in systolic spaces
JO  - Geometry & topology
PY  - 2009
SP  - 661
EP  - 698
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.661/
DO  - 10.2140/gt.2009.13.661
ID  - GT_2009_13_2_a1
ER  - 
%0 Journal Article
%A Elsner, Tomasz
%T Flats and the flat torus theorem in systolic spaces
%J Geometry & topology
%D 2009
%P 661-698
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.661/
%R 10.2140/gt.2009.13.661
%F GT_2009_13_2_a1
Elsner, Tomasz. Flats and the flat torus theorem in systolic spaces. Geometry & topology, Tome 13 (2009) no. 2, pp. 661-698. doi : 10.2140/gt.2009.13.661. http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.661/

[1] M R Bridson, A Haefliger, Metric spaces of non-positive curvature, Grundlehren series 319, Springer (1999)

[2] T Elsner, Asymptotic cones of systolic spaces, in preparation

[3] T Elsner, Isometries of systolic spaces, submitted

[4] T Elsner, Systolic groups with isolated flats, submitted

[5] F Haglund, Complexes simpliciaux hyperboliques de grande dimension, Prepublication Orsay 71 (2003)

[6] G C Hruska, Nonpositively curved $2$–complexes with isolated flats, Geom. Topol. 8 (2004) 205

[7] G C Hruska, B Kleiner, Hadamard spaces with isolated flats, Geom. Topol. 9 (2005) 1501

[8] T Januszkiewicz, J Światkowski, Simplicial nonpositive curvature, Publ. Math. Inst. Hautes Études Sci. (2006) 1

[9] T Januszkiewicz, J Światkowski, Filling invariants of systolic complexes and groups, Geom. Topol. 11 (2007) 727

[10] P Przytycki, Systolic groups acting on complexes with no flats are word-hyperbolic, Fund. Math. 193 (2007) 277

[11] E H Spanier, Algebraic topology, McGraw-Hill (1966)

Cité par Sources :