The Jones polynomial of ribbon links
Geometry & topology, Tome 13 (2009) no. 2, pp. 623-660.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

For every n–component ribbon link L we prove that the Jones polynomial V (L) is divisible by the polynomial V (n) of the trivial link. This integrality property allows us to define a generalized determinant detV (L) := [V (L)V (n)](t1), for which we derive congruences reminiscent of the Arf invariant: every ribbon link L = K1 Kn satisfies detV (L) det(K1)det(Kn) modulo 32, whence in particular detV (L) 1 modulo 8.

These results motivate to study the power series expansion V (L) = k=0dk(L)hk at t = 1, instead of t = 1 as usual. We obtain a family of link invariants dk(L), starting with the link determinant d0(L) = det(L) obtained from a Seifert surface S spanning L. The invariants dk(L) are not of finite type with respect to crossing changes of L, but they turn out to be of finite type with respect to band crossing changes of S. This discovery is the starting point of a theory of surface invariants of finite type, which promises to reconcile quantum invariants with the theory of Seifert surfaces, or more generally ribbon surfaces.

DOI : 10.2140/gt.2009.13.623
Keywords: Jones polynomial, ribbon link, slice link, nullity, signature, determinant of links

Eisermann, Michael 1

1 Institut Fourier, Université Grenoble I, France
@article{GT_2009_13_2_a0,
     author = {Eisermann, Michael},
     title = {The {Jones} polynomial of ribbon links},
     journal = {Geometry & topology},
     pages = {623--660},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2009},
     doi = {10.2140/gt.2009.13.623},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.623/}
}
TY  - JOUR
AU  - Eisermann, Michael
TI  - The Jones polynomial of ribbon links
JO  - Geometry & topology
PY  - 2009
SP  - 623
EP  - 660
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.623/
DO  - 10.2140/gt.2009.13.623
ID  - GT_2009_13_2_a0
ER  - 
%0 Journal Article
%A Eisermann, Michael
%T The Jones polynomial of ribbon links
%J Geometry & topology
%D 2009
%P 623-660
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.623/
%R 10.2140/gt.2009.13.623
%F GT_2009_13_2_a0
Eisermann, Michael. The Jones polynomial of ribbon links. Geometry & topology, Tome 13 (2009) no. 2, pp. 623-660. doi : 10.2140/gt.2009.13.623. http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.623/

[1] J W Alexander, Topological invariants of knots and links, Trans. Amer. Math. Soc. 30 (1928) 275

[2] D Bar-Natan, On the Vassiliev knot invariants, Topology 34 (1995) 423

[3] D Bar-Natan, Khovanov's homology for tangles and cobordisms, Geom. Topol. 9 (2005) 1443

[4] J S Birman, X S Lin, Knot polynomials and Vassiliev's invariants, Invent. Math. 111 (1993) 225

[5] G Burde, H Zieschang, Knots, de Gruyter Studies in Mathematics 5, Walter de Gruyter Co. (1985)

[6] A J Casson, C M Gordon, Cobordism of classical knots, from: "À la recherche de la topologie perdue", Progr. Math. 62, Birkhäuser (1986) 181

[7] T D Cochran, Concordance invariance of coefficients of Conway's link polynomial, Invent. Math. 82 (1985) 527

[8] J H Conway, An enumeration of knots and links, and some of their algebraic properties, from: "Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967)", Pergamon (1970) 329

[9] M Eisermann, A geometric characterization of Vassiliev invariants, Trans. Amer. Math. Soc. 355 (2003) 4825

[10] M Eisermann, Finite type invariants of surfaces in $3$–space, in preparation (2008)

[11] M Eisermann, C Lamm, A refined Jones polynomial for symmetric unions (2008)

[12] D Erle, Quadratische Formen als Invarianten von Einbettungen der Kodimension $2$, Topology 8 (1969) 99

[13] V Florens, On the Fox–Milnor theorem for the Alexander polynomial of links, Int. Math. Res. Not. (2004) 55

[14] R H Fox, Some problems in knot theory, from: "Topology of 3–manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961)", Prentice-Hall (1962) 168

[15] R H Fox, J W Milnor, Singularities of $2$–spheres in $4$–space and cobordism of knots, Osaka J. Math. 3 (1966) 257

[16] P Freyd, D Yetter, J Hoste, W B R Lickorish, K Millett, A Ocneanu, A new polynomial invariant of knots and links, Bull. Amer. Math. Soc. $($N.S.$)$ 12 (1985) 239

[17] S Garoufalidis, Signatures of links and finite type invariants of cyclic branched covers, from: "Tel Aviv Topology Conference: Rothenberg Festschrift (1998)", Contemp. Math. 231, Amer. Math. Soc. (1999) 87

[18] C M Gordon, Ribbon concordance of knots in the $3$–sphere, Math. Ann. 257 (1981) 157

[19] M N Gusarov, A new form of the Conway–Jones polynomial of oriented links, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 193 (1991) 4, 161

[20] M Jacobsson, An invariant of link cobordisms from Khovanov homology, Algebr. Geom. Topol. 4 (2004) 1211

[21] V F R Jones, A polynomial invariant for knots via von Neumann algebras, Bull. Amer. Math. Soc. $($N.S.$)$ 12 (1985) 103

[22] L H Kauffman, On knots, Annals of Mathematics Studies 115, Princeton University Press (1987)

[23] L H Kauffman, State models and the Jones polynomial, Topology 26 (1987) 395

[24] L H Kauffman, An invariant of regular isotopy, Trans. Amer. Math. Soc. 318 (1990) 417

[25] A Kawauchi, On the Alexander polynomials of cobordant links, Osaka J. Math. 15 (1978) 151

[26] M Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101 (2000) 359

[27] M Khovanov, An invariant of tangle cobordisms, Trans. Amer. Math. Soc. 358 (2006) 315

[28] R Kirby, Editor, Problems in low-dimensional topology, from: "Geometric topology (Athens, GA, 1993)", AMS/IP Stud. Adv. Math. 2 (1997)

[29] S Lang, Algebra, Graduate Texts in Mathematics 211, Springer (2002)

[30] C Lescop, Global surgery formula for the Casson–Walker invariant, Annals of Mathematics Studies 140, Princeton University Press (1996)

[31] J Levine, Knot cobordism groups in codimension two, Comment. Math. Helv. 44 (1969) 229

[32] W B R Lickorish, An introduction to knot theory, Graduate Texts in Mathematics 175, Springer (1997)

[33] C Livingston, A survey of classical knot concordance, from: "Handbook of knot theory", Elsevier B. V., Amsterdam (2005) 319

[34] J W Milnor, Infinite cyclic coverings, from: "Conference on the Topology of Manifolds (Michigan State Univ., E. Lansing, Mich., 1967)", Prindle, Weber Schmidt, Boston (1968) 115

[35] Y Mizuma, Ribbon knots of 1–fusion, the Jones polynomial, and the Casson–Walker invariant, Rev. Mat. Complut. 18 (2005) 387

[36] Y Mizuma, An estimate of the ribbon number by the Jones polynomial, Osaka J. Math. 43 (2006) 365

[37] D Mullins, The generalized Casson invariant for $2$–fold branched covers of $S^3$ and the Jones polynomial, Topology 32 (1993) 419

[38] H Murakami, T Ohtsuki, Finite type invariants of knots via their Seifert matrices, Asian J. Math. 5 (2001) 379

[39] H Murakami, T Ohtsuki, S Yamada, Homfly polynomial via an invariant of colored plane graphs, Enseign. Math. $(2)$ 44 (1998) 325

[40] K Murasugi, On a certain numerical invariant of link types, Trans. Amer. Math. Soc. 117 (1965) 387

[41] G Polya, Induction and analogy in mathematics. Mathematics and plausible reasoning, vol. I, Princeton University Press (1954)

[42] J H Przytycki, P Traczyk, Invariants of links of Conway type, Kobe J. Math. 4 (1988) 115

[43] J A Rasmussen, Khovanov homology and the slice genus, Invent. Math. (to appear)

[44] D Rolfsen, Knots and links, Mathematics Lecture Series 7, Publish or Perish (1990)

[45] A G Tristram, Some cobordism invariants for links, Proc. Cambridge Philos. Soc. 66 (1969) 251

[46] V A Vassiliev, Cohomology of knot spaces, from: "Theory of singularities and its applications", Adv. Soviet Math. 1, Amer. Math. Soc. (1990) 23

[47] O Viro, Editor, Topology of manifolds and varieties, Advances in Soviet Mathematics 18, Amer. Math. Soc. (1994)

Cité par Sources :