Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We have developed a mathematical theory of the topological vertex—a theory that was originally proposed by M Aganagic, A Klemm, M Mariño and C Vafa on effectively computing Gromov–Witten invariants of smooth toric Calabi–Yau threefolds derived from duality between open string theory of smooth Calabi–Yau threefolds and Chern–Simons theory on three-manifolds.
Li, Jun 1 ; Liu, Chiu-Chu Melissa 2 ; Liu, Kefeng 3 ; Zhou, Jian 4
@article{GT_2009_13_1_a12, author = {Li, Jun and Liu, Chiu-Chu Melissa and Liu, Kefeng and Zhou, Jian}, title = {A mathematical theory of the topological vertex}, journal = {Geometry & topology}, pages = {527--621}, publisher = {mathdoc}, volume = {13}, number = {1}, year = {2009}, doi = {10.2140/gt.2009.13.527}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.527/} }
TY - JOUR AU - Li, Jun AU - Liu, Chiu-Chu Melissa AU - Liu, Kefeng AU - Zhou, Jian TI - A mathematical theory of the topological vertex JO - Geometry & topology PY - 2009 SP - 527 EP - 621 VL - 13 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.527/ DO - 10.2140/gt.2009.13.527 ID - GT_2009_13_1_a12 ER -
%0 Journal Article %A Li, Jun %A Liu, Chiu-Chu Melissa %A Liu, Kefeng %A Zhou, Jian %T A mathematical theory of the topological vertex %J Geometry & topology %D 2009 %P 527-621 %V 13 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.527/ %R 10.2140/gt.2009.13.527 %F GT_2009_13_1_a12
Li, Jun; Liu, Chiu-Chu Melissa; Liu, Kefeng; Zhou, Jian. A mathematical theory of the topological vertex. Geometry & topology, Tome 13 (2009) no. 1, pp. 527-621. doi : 10.2140/gt.2009.13.527. http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.527/
[1] The topological vertex, Comm. Math. Phys. 254 (2005) 425
, , , ,[2] All loop topological string amplitudes from Chern–Simons theory, Comm. Math. Phys. 247 (2004) 467
, , ,[3] Gromov–Witten invariants in algebraic geometry, Invent. Math. 127 (1997) 601
,[4] The intrinsic normal cone, Invent. Math. 128 (1997) 45
, ,[5] Localization and gluing of topological amplitudes, Comm. Math. Phys. 257 (2005) 119
, ,[6] Equivariant intersection theory, Invent. Math. 131 (1998) 595
, ,[7] Localization in equivariant intersection theory and the Bott residue formula, Amer. J. Math. 120 (1998) 619
, ,[8] A differential operator for symmetric functions and the combinatorics of multiplying transpositions, Trans. Amer. Math. Soc. 344 (1994) 421
,[9] Transitive factorisations into transpositions and holomorphic mappings on the sphere, Proc. Amer. Math. Soc. 125 (1997) 51
, ,[10] The number of ramified coverings of the sphere by the torus and surfaces of higher genera, Ann. Comb. 4 (2000) 27
, , ,[11] Localization of virtual classes, Invent. Math. 135 (1999) 487
, ,[12] Relative Gromov–Witten invariants, Ann. of Math. $(2)$ 157 (2003) 45
, ,[13] The symplectic sum formula for Gromov–Witten invariants, Ann. of Math. $(2)$ 159 (2004) 935
, ,[14] All genus topological amplitudes and $5$–brane webs as Feynman diagrams
,[15] Gromov–Witten invariants of varieties with holomorphic $2$–forms
, ,[16] Integrality of Gopakumar–Vafa invariants of toric Calabi–Yau threefolds, Publ. Res. Inst. Math. Sci. 42 (2006) 605
,[17] Pole structure of topological string free energy, Publ. Res. Inst. Math. Sci. 42 (2006) 173
,[18] Symplectic surgery and Gromov–Witten invariants of Calabi–Yau $3$–folds, Invent. Math. 145 (2001) 151
, ,[19] Stable morphisms to singular schemes and relative stable morphisms, J. Differential Geom. 57 (2001) 509
,[20] A degeneration formula of GW-invariants, J. Differential Geom. 60 (2002) 199
,[21] Virtual moduli cycles and Gromov–Witten invariants of algebraic varieties, J. Amer. Math. Soc. 11 (1998) 119
, ,[22] A proof of a conjecture of Mariño–Vafa on Hodge integrals, J. Differential Geom. 65 (2003) 289
, , ,[23] A formula of two-partition Hodge integrals, J. Amer. Math. Soc. 20 (2007) 149
, , ,[24] Symmetric functions and Hall polynomials, Oxford Math. Monogr., Oxford Science Publ., The Clarendon Press, Oxford University Press (1995)
,[25] Framed knots at large $N$, from: "Orbifolds in mathematics and physics (Madison, WI, 2001)", Contemp. Math. 310, Amer. Math. Soc. (2002) 185
, ,[26] Gromov–Witten theory and Donaldson–Thomas theory. I, Compos. Math. 142 (2006) 1263
, , , ,[27] Gromov–Witten theory and Donaldson–Thomas theory. II, Compos. Math. 142 (2006) 1286
, , , ,[28] Gromov–Witten/Donaldson–Thomas correspondence for toric $3$–folds
, , , ,[29] Hodge integrals and invariants of the unknot, Geom. Topol. 8 (2004) 675
, ,[30] Virasoro constraints for target curves, Invent. Math. 163 (2006) 47
, ,[31] Quantum Calabi–Yau and classical crystals, from: "The unity of mathematics", Progr. Math. 244, Birkhäuser (2006) 597
, , ,[32] The $3$–fold vertex via stable pairs
, ,[33] Curve counting via stable pairs in the derived category
, ,[34] A simple proof of Gopakumar–Vafa conjecture for local toric Calabi–Yau manifolds, Comm. Math. Phys. 276 (2007) 551
,[35] A conjecture on Hodge integrals
,[36] Curve counting and instanton counting
,[37] Localizations on moduli spaces and free field realizations of Feynman rules
,Cité par Sources :