A mathematical theory of the topological vertex
Geometry & topology, Tome 13 (2009) no. 1, pp. 527-621.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We have developed a mathematical theory of the topological vertex—a theory that was originally proposed by M Aganagic, A Klemm, M Mariño and C Vafa on effectively computing Gromov–Witten invariants of smooth toric Calabi–Yau threefolds derived from duality between open string theory of smooth Calabi–Yau threefolds and Chern–Simons theory on three-manifolds.

DOI : 10.2140/gt.2009.13.527
Keywords: topological vertex, Gromov–Witten invariant, Calabi–Yau threefold

Li, Jun 1 ; Liu, Chiu-Chu Melissa 2 ; Liu, Kefeng 3 ; Zhou, Jian 4

1 Department of Mathematics, Stanford University, Stanford, CA 94305, USA
2 Department of Mathematics, Columbia University, New York, NY 10027, USA
3 Center of Mathematical Sciences, Zhejiang University, Hangzhou 310027, China, and Department of Mathematics, University of California at Los Angeles, Los Angeles, CA 90095-1555, USA
4 Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China
@article{GT_2009_13_1_a12,
     author = {Li, Jun and Liu, Chiu-Chu Melissa and Liu, Kefeng and Zhou, Jian},
     title = {A mathematical theory of the topological vertex},
     journal = {Geometry & topology},
     pages = {527--621},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2009},
     doi = {10.2140/gt.2009.13.527},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.527/}
}
TY  - JOUR
AU  - Li, Jun
AU  - Liu, Chiu-Chu Melissa
AU  - Liu, Kefeng
AU  - Zhou, Jian
TI  - A mathematical theory of the topological vertex
JO  - Geometry & topology
PY  - 2009
SP  - 527
EP  - 621
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.527/
DO  - 10.2140/gt.2009.13.527
ID  - GT_2009_13_1_a12
ER  - 
%0 Journal Article
%A Li, Jun
%A Liu, Chiu-Chu Melissa
%A Liu, Kefeng
%A Zhou, Jian
%T A mathematical theory of the topological vertex
%J Geometry & topology
%D 2009
%P 527-621
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.527/
%R 10.2140/gt.2009.13.527
%F GT_2009_13_1_a12
Li, Jun; Liu, Chiu-Chu Melissa; Liu, Kefeng; Zhou, Jian. A mathematical theory of the topological vertex. Geometry & topology, Tome 13 (2009) no. 1, pp. 527-621. doi : 10.2140/gt.2009.13.527. http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.527/

[1] M Aganagic, A Klemm, M Mariño, C Vafa, The topological vertex, Comm. Math. Phys. 254 (2005) 425

[2] M Aganagic, M Mariño, C Vafa, All loop topological string amplitudes from Chern–Simons theory, Comm. Math. Phys. 247 (2004) 467

[3] K Behrend, Gromov–Witten invariants in algebraic geometry, Invent. Math. 127 (1997) 601

[4] K Behrend, B Fantechi, The intrinsic normal cone, Invent. Math. 128 (1997) 45

[5] D E Diaconescu, B Florea, Localization and gluing of topological amplitudes, Comm. Math. Phys. 257 (2005) 119

[6] D Edidin, W Graham, Equivariant intersection theory, Invent. Math. 131 (1998) 595

[7] D Edidin, W Graham, Localization in equivariant intersection theory and the Bott residue formula, Amer. J. Math. 120 (1998) 619

[8] I P Goulden, A differential operator for symmetric functions and the combinatorics of multiplying transpositions, Trans. Amer. Math. Soc. 344 (1994) 421

[9] I P Goulden, D M Jackson, Transitive factorisations into transpositions and holomorphic mappings on the sphere, Proc. Amer. Math. Soc. 125 (1997) 51

[10] I P Goulden, D M Jackson, A Vainshtein, The number of ramified coverings of the sphere by the torus and surfaces of higher genera, Ann. Comb. 4 (2000) 27

[11] T Graber, R Pandharipande, Localization of virtual classes, Invent. Math. 135 (1999) 487

[12] E N Ionel, T H Parker, Relative Gromov–Witten invariants, Ann. of Math. $(2)$ 157 (2003) 45

[13] E N Ionel, T H Parker, The symplectic sum formula for Gromov–Witten invariants, Ann. of Math. $(2)$ 159 (2004) 935

[14] A. Iqbal, All genus topological amplitudes and $5$–brane webs as Feynman diagrams

[15] Y-H. Kiem, J. Li, Gromov–Witten invariants of varieties with holomorphic $2$–forms

[16] Y Konishi, Integrality of Gopakumar–Vafa invariants of toric Calabi–Yau threefolds, Publ. Res. Inst. Math. Sci. 42 (2006) 605

[17] Y Konishi, Pole structure of topological string free energy, Publ. Res. Inst. Math. Sci. 42 (2006) 173

[18] A M Li, Y Ruan, Symplectic surgery and Gromov–Witten invariants of Calabi–Yau $3$–folds, Invent. Math. 145 (2001) 151

[19] J Li, Stable morphisms to singular schemes and relative stable morphisms, J. Differential Geom. 57 (2001) 509

[20] J Li, A degeneration formula of GW-invariants, J. Differential Geom. 60 (2002) 199

[21] J Li, G Tian, Virtual moduli cycles and Gromov–Witten invariants of algebraic varieties, J. Amer. Math. Soc. 11 (1998) 119

[22] C C M Liu, K Liu, J Zhou, A proof of a conjecture of Mariño–Vafa on Hodge integrals, J. Differential Geom. 65 (2003) 289

[23] C C M Liu, K Liu, J Zhou, A formula of two-partition Hodge integrals, J. Amer. Math. Soc. 20 (2007) 149

[24] I G Macdonald, Symmetric functions and Hall polynomials, Oxford Math. Monogr., Oxford Science Publ., The Clarendon Press, Oxford University Press (1995)

[25] M Mariño, C Vafa, Framed knots at large $N$, from: "Orbifolds in mathematics and physics (Madison, WI, 2001)", Contemp. Math. 310, Amer. Math. Soc. (2002) 185

[26] D Maulik, N Nekrasov, A Okounkov, R Pandharipande, Gromov–Witten theory and Donaldson–Thomas theory. I, Compos. Math. 142 (2006) 1263

[27] D Maulik, N Nekrasov, A Okounkov, R Pandharipande, Gromov–Witten theory and Donaldson–Thomas theory. II, Compos. Math. 142 (2006) 1286

[28] D Maulik, A Oblomkov, A Okounkov, R Pandharipande, Gromov–Witten/Donaldson–Thomas correspondence for toric $3$–folds

[29] A Okounkov, R Pandharipande, Hodge integrals and invariants of the unknot, Geom. Topol. 8 (2004) 675

[30] A Okounkov, R Pandharipande, Virasoro constraints for target curves, Invent. Math. 163 (2006) 47

[31] A Okounkov, N Reshetikhin, C Vafa, Quantum Calabi–Yau and classical crystals, from: "The unity of mathematics", Progr. Math. 244, Birkhäuser (2006) 597

[32] R. Pandharipande, R P. Thomas, The $3$–fold vertex via stable pairs

[33] R. Pandharipande, R P Thomas, Curve counting via stable pairs in the derived category

[34] P Peng, A simple proof of Gopakumar–Vafa conjecture for local toric Calabi–Yau manifolds, Comm. Math. Phys. 276 (2007) 551

[35] J. Zhou, A conjecture on Hodge integrals

[36] J. Zhou, Curve counting and instanton counting

[37] J. Zhou, Localizations on moduli spaces and free field realizations of Feynman rules

Cité par Sources :