Seiberg–Witten Floer homology and symplectic forms on S1 × M3
Geometry & topology, Tome 13 (2009) no. 1, pp. 493-525.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let M be a closed, connected, orientable three-manifold. The purpose of this paper is to study the Seiberg–Witten Floer homology of M given that S1 × M admits a symplectic form.

DOI : 10.2140/gt.2009.13.493
Keywords: Seiberg–Witten Floer homology, symplectic form

Kutluhan, Çağatay 1 ; Taubes, Clifford Henry 2

1 Department of Mathematics, The University of Michigan, 530 Church Street, Ann Arbor, MI 48109, USA
2 Department of Mathematics, Harvard University, One Oxford Street, Cambridge, MA 02138, USA
@article{GT_2009_13_1_a11,
     author = {Kutluhan, \c{C}a\u{g}atay and Taubes, Clifford Henry},
     title = {Seiberg{\textendash}Witten {Floer} homology and symplectic forms on {S1} {\texttimes} {M3}},
     journal = {Geometry & topology},
     pages = {493--525},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2009},
     doi = {10.2140/gt.2009.13.493},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.493/}
}
TY  - JOUR
AU  - Kutluhan, Çağatay
AU  - Taubes, Clifford Henry
TI  - Seiberg–Witten Floer homology and symplectic forms on S1 × M3
JO  - Geometry & topology
PY  - 2009
SP  - 493
EP  - 525
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.493/
DO  - 10.2140/gt.2009.13.493
ID  - GT_2009_13_1_a11
ER  - 
%0 Journal Article
%A Kutluhan, Çağatay
%A Taubes, Clifford Henry
%T Seiberg–Witten Floer homology and symplectic forms on S1 × M3
%J Geometry & topology
%D 2009
%P 493-525
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.493/
%R 10.2140/gt.2009.13.493
%F GT_2009_13_1_a11
Kutluhan, Çağatay; Taubes, Clifford Henry. Seiberg–Witten Floer homology and symplectic forms on S1 × M3. Geometry & topology, Tome 13 (2009) no. 1, pp. 493-525. doi : 10.2140/gt.2009.13.493. http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.493/

[1] M F Atiyah, V K Patodi, I M Singer, Spectral asymmetry and Riemannian geometry. I, Math. Proc. Cambridge Philos. Soc. 77 (1975) 43

[2] S Friedl, S Vidussi, Twisted Alexander polynomials detect fibered $3$–manifolds

[3] P Kronheimer, T Mrowka, Knots, sutures and excision

[4] P Kronheimer, T Mrowka, Monopoles and three-manifolds, New Math. Monogr. 10, Cambridge University Press (2007)

[5] A K Liu, Some new applications of general wall crossing formula, Gompf's conjecture and its applications, Math. Res. Lett. 3 (1996) 569

[6] J D Mccarthy, On the asphericity of a symplectic $M^3\times S^1$, Proc. Amer. Math. Soc. 129 (2001) 257

[7] Y Ni, Addendum to: Knots, sutures and excision \rm\citekm2

[8] H Ohta, K Ono, Notes on symplectic $4$–manifolds with $b^+_2=1$. II, Internat. J. Math. 7 (1996) 755

[9] C H Taubes, The Seiberg–Witten equations and the Weinstein conjecture II: More closed integral curves for the Reeb vector field

[10] C H Taubes, The Seiberg–Witten invariants and symplectic forms, Math. Res. Lett. 1 (1994) 809

[11] C H Taubes, Asymptotic spectral flow for Dirac operators, Comm. Anal. Geom. 15 (2007) 569

[12] C H Taubes, The Seiberg–Witten equations and the Weinstein conjecture, Geom. Topol. 11 (2007) 2117

Cité par Sources :