Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let be a closed, connected, orientable three-manifold. The purpose of this paper is to study the Seiberg–Witten Floer homology of given that admits a symplectic form.
Kutluhan, Çağatay 1 ; Taubes, Clifford Henry 2
@article{GT_2009_13_1_a11, author = {Kutluhan, \c{C}a\u{g}atay and Taubes, Clifford Henry}, title = {Seiberg{\textendash}Witten {Floer} homology and symplectic forms on {S1} {\texttimes} {M3}}, journal = {Geometry & topology}, pages = {493--525}, publisher = {mathdoc}, volume = {13}, number = {1}, year = {2009}, doi = {10.2140/gt.2009.13.493}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.493/} }
TY - JOUR AU - Kutluhan, Çağatay AU - Taubes, Clifford Henry TI - Seiberg–Witten Floer homology and symplectic forms on S1 × M3 JO - Geometry & topology PY - 2009 SP - 493 EP - 525 VL - 13 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.493/ DO - 10.2140/gt.2009.13.493 ID - GT_2009_13_1_a11 ER -
%0 Journal Article %A Kutluhan, Çağatay %A Taubes, Clifford Henry %T Seiberg–Witten Floer homology and symplectic forms on S1 × M3 %J Geometry & topology %D 2009 %P 493-525 %V 13 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.493/ %R 10.2140/gt.2009.13.493 %F GT_2009_13_1_a11
Kutluhan, Çağatay; Taubes, Clifford Henry. Seiberg–Witten Floer homology and symplectic forms on S1 × M3. Geometry & topology, Tome 13 (2009) no. 1, pp. 493-525. doi : 10.2140/gt.2009.13.493. http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.493/
[1] Spectral asymmetry and Riemannian geometry. I, Math. Proc. Cambridge Philos. Soc. 77 (1975) 43
, , ,[2] Twisted Alexander polynomials detect fibered $3$–manifolds
, ,[3] Knots, sutures and excision
, ,[4] Monopoles and three-manifolds, New Math. Monogr. 10, Cambridge University Press (2007)
, ,[5] Some new applications of general wall crossing formula, Gompf's conjecture and its applications, Math. Res. Lett. 3 (1996) 569
,[6] On the asphericity of a symplectic $M^3\times S^1$, Proc. Amer. Math. Soc. 129 (2001) 257
,[7] Addendum to: Knots, sutures and excision \rm\citekm2
,[8] Notes on symplectic $4$–manifolds with $b^+_2=1$. II, Internat. J. Math. 7 (1996) 755
, ,[9] The Seiberg–Witten equations and the Weinstein conjecture II: More closed integral curves for the Reeb vector field
,[10] The Seiberg–Witten invariants and symplectic forms, Math. Res. Lett. 1 (1994) 809
,[11] Asymptotic spectral flow for Dirac operators, Comm. Anal. Geom. 15 (2007) 569
,[12] The Seiberg–Witten equations and the Weinstein conjecture, Geom. Topol. 11 (2007) 2117
,Cité par Sources :