Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
This paper continues our project started in [J. Funct. Anal. 219, 109–133] where Poincaré duality in –theory was studied for singular manifolds with isolated conical singularities. Here, we extend the study and the results to general stratified pseudomanifolds. We review the axiomatic definition of a smooth stratification of a topological space and we define a groupoid , called the –tangent space. This groupoid is made of different pieces encoding the tangent spaces of strata, and these pieces are glued into the smooth noncommutative groupoid using the familiar procedure introduced by Connes for the tangent groupoid of a manifold. The main result is that is Poincaré dual to , in other words, the –tangent space plays the role in –theory of a tangent space for .
Debord, Claire 1 ; Lescure, Jean-Marie 1
@article{GT_2009_13_1_a1, author = {Debord, Claire and Lescure, Jean-Marie}, title = {K{\textendash}duality for stratified pseudomanifolds}, journal = {Geometry & topology}, pages = {49--86}, publisher = {mathdoc}, volume = {13}, number = {1}, year = {2009}, doi = {10.2140/gt.2009.13.49}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.49/} }
Debord, Claire; Lescure, Jean-Marie. K–duality for stratified pseudomanifolds. Geometry & topology, Tome 13 (2009) no. 1, pp. 49-86. doi : 10.2140/gt.2009.13.49. http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.49/
[1] Amenable groupoids, Monogr. de L'Enseignement Math. 36, L’Enseignement Mathématique (2000) 196
, ,[2] The index of elliptic operators. I, Ann. of Math. $(2)$ 87 (1968) 484
, ,[3] Théorème de de Rham pour les variétés stratifiées, Ann. Global Anal. Geom. 9 (1991) 211
, , ,[4] $\mathcal{L}^2$–cohomologie des espaces stratifiés, Manuscripta Math. 76 (1992) 21
, , ,[5] A survey of foliations and operator algebras, from: "Operator algebras and applications, Part I (Kingston, Ont., 1980)", Proc. Sympos. Pure Math. 38, Amer. Math. Soc. (1982) 521
,[6] Noncommutative geometry, Academic Press (1994)
,[7] The longitudinal index theorem for foliations, Publ. Res. Inst. Math. Sci. 20 (1984) 1139
, ,[8] Integrability of Lie brackets, Ann. of Math. $(2)$ 157 (2003) 575
, ,[9] Mapping cones and exact sequences in $KK$–theory, J. Operator Theory 15 (1986) 163
, ,[10] Holonomy groupoids of singular foliations, J. Differential Geom. 58 (2001) 467
,[11] $K$–duality for pseudomanifolds with isolated singularities, J. Funct. Anal. 219 (2005) 109
, ,[12] Index theory and groupoids, Notes of the lectures given at the summer school Geometric and Topological Methods for Quantum Field Theory at Villa de Leyva (2007)
, ,[13] Groupoids and an index theorem for conical pseudo-manifolds, to appear in J. Reine Angew. Math.
, , ,[14] Euler characteristics and Gysin sequences for group actions on boundaries, Math. Ann. 334 (2006) 853
, ,[15] Dualities in equivariant Kasparov theory
, ,[16] Intersection homology theory, Topology 19 (1980) 135
, ,[17] Morphismes $K$–orientés d'espaces de feuilles et fonctorialité en théorie de Kasparov (d'après une conjecture d'A Connes), Ann. Sci. École Norm. Sup. $(4)$ 20 (1987) 325
, ,[18] Surgery and stratified spaces, from: "Surveys on surgery theory, Vol. 2", Ann. of Math. Stud. 149, Princeton Univ. Press (2001) 319
, ,[19] The operator $K$–functor and extensions of $C^*$–algebras, Izv. Akad. Nauk SSSR Ser. Mat. 44 (1980) 571, 719
,[20] Equivariant $KK$–theory and the Novikov conjecture, Invent. Math. 91 (1988) 147
,[21] Elliptic symbols, elliptic operators and Poincaré duality on conical pseudomanifolds, to appear in J. $K$–theory
,[22] Lie groupoids and Lie algebroids in differential geometry, London Math. Soc. Lecture Note Ser. 124, Cambridge University Press (1987)
,[23] Stratifications and mappings, from: "Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 1971)", Academic Press (1973) 195
,[24] Pseudodifferential operators, corners and singular limits, from: "Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990)", Math. Soc. Japan (1991) 217
,[25] Index in $K$–theory for families of fibred cusp operators, $K$–Theory 37 (2006) 25
, ,[26] Groupoïdes et calcul pseudo-différentiel sur les variétés à coins, PhD thesis, Université Paris VII-Denis Diderot (1998)
,[27] A topological index theorem for manifolds with corners
, ,[28] Equivalence and isomorphism for groupoid $C^*$–algebras, J. Operator Theory 17 (1987) 3
, , ,[29] On the homotopy classification of elliptic operators on stratified manifolds, Dokl. Akad. Nauk 408 (2006) 591
, , ,[30] A groupoid approach to $C^*$–algebras, Lecture Notes in Math. 793, Springer (1980)
,[31] Elliptic operators on manifolds with singularities and $K$–homology, $K$–Theory 34 (2005) 71
,[32] Geometric models for noncommutative algebras, Berkeley Math. Lecture Notes 10, Amer. Math. Soc. (1999)
, ,[33] Stratified mappings—structure and triangulability, Lecture Notes in Math. 1102, Springer (1984)
,[34] Local properties of analytic varieties, from: "Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse)", Princeton Univ. Press (1965) 205
,Cité par Sources :