Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let be a smooth irreducible projective complex variety with an ample line bundle , and be a simple normal crossing hypersurface. We establish the Kobayashi–Hitchin correspondence between tame harmonic bundles on and –stable parabolic –flat bundles with trivial characteristic numbers on . In particular, we obtain the quasiprojective version of the Corlette–Simpson correspondence between flat bundles and Higgs bundles.
Mochizuki, Takuro 1
@article{GT_2009_13_1_a9, author = {Mochizuki, Takuro}, title = {Kobayashi{\textendash}Hitchin correspondence for tame harmonic bundles {II}}, journal = {Geometry & topology}, pages = {359--455}, publisher = {mathdoc}, volume = {13}, number = {1}, year = {2009}, doi = {10.2140/gt.2009.13.359}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.359/} }
Mochizuki, Takuro. Kobayashi–Hitchin correspondence for tame harmonic bundles II. Geometry & topology, Tome 13 (2009) no. 1, pp. 359-455. doi : 10.2140/gt.2009.13.359. http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.359/
[1] Fibrés de Higgs et connexions intégrables: le cas logarithmique (diviseur lisse), Ann. Sci. École Norm. Sup. $(4)$ 30 (1997) 41
,[2] Flat $G$–bundles with canonical metrics, J. Differential Geom. 28 (1988) 361
,[3] Équations différentielles à points singuliers réguliers, Lecture Notes in Math. 163, Springer (1970)
,[4] Anti self-dual Yang–Mills connections over complex algebraic surfaces and stable vector bundles, Proc. London Math. Soc. $(3)$ 50 (1985) 1
,[5] Infinite determinants, stable bundles and curvature, Duke Math. J. 54 (1987) 231
,[6] Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964) 109
, ,[7] Limits of families of Brieskorn lattices and compactified classifying spaces
, ,[8] $D$–modules, perverse sheaves, and representation theory, Progress in Math. 236, Birkhäuser (2008)
, , ,[9] A relation between the parabolic Chern characters of the de Rham bundles, Math. Ann. 338 (2007) 347
, ,[10] Harmonic maps of infinite energy and rigidity results for representations of fundamental groups of quasiprojective varieties, J. Differential Geom. 47 (1997) 469
, ,[11] The universal Kobayashi–Hitchin correspondence on Hermitian manifolds, Mem. Amer. Math. Soc. 863 (2006)
, ,[12] Restriction of stable sheaves and representations of the fundamental group, Invent. Math. 77 (1984) 163
, ,[13] Wild harmonic bundles and wild pure twistor $D$–modules
,[14] Kobayashi–Hitchin correspondence for tame harmonic bundles and an application, Astérisque 309 (2006)
,[15] Asymptotic behaviour of tame harmonic bundles and an application to pure twistor $D$–modules. II, Mem. Amer. Math. Soc. 185 (2007)
,[16] Polarizable twistor $D$–modules, Astérisque 300 (2005)
,[17] Constructing variations of Hodge structure using Yang–Mills theory and applications to uniformization, J. Amer. Math. Soc. 1 (1988) 867
,[18] Harmonic bundles on noncompact curves, J. Amer. Math. Soc. 3 (1990) 713
,[19] Higgs bundles and local systems, Inst. Hautes Études Sci. Publ. Math. (1992) 5
,[20] The Hodge filtration on nonabelian cohomology, from: "Algebraic geometry—Santa Cruz 1995", Proc. Sympos. Pure Math. 62, Amer. Math. Soc. (1997) 217
,[21] The construction problem in Kähler geometry, from: "Different faces of geometry", Int. Math. Ser. (N. Y.) 3, Kluwer/Plenum, New York (2004) 365
,[22] On the existence of Hermitian–Yang–Mills connections in stable vector bundles, Comm. Pure Appl. Math. 39 (1986)
, ,Cité par Sources :