Kobayashi–Hitchin correspondence for tame harmonic bundles II
Geometry & topology, Tome 13 (2009) no. 1, pp. 359-455.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let X be a smooth irreducible projective complex variety with an ample line bundle L, and D be a simple normal crossing hypersurface. We establish the Kobayashi–Hitchin correspondence between tame harmonic bundles on X D and μL–stable parabolic λ–flat bundles with trivial characteristic numbers on (X,D). In particular, we obtain the quasiprojective version of the Corlette–Simpson correspondence between flat bundles and Higgs bundles.

DOI : 10.2140/gt.2009.13.359
Keywords: harmonic bundle, $\lambda$-connection, Kobayashi–Hitchin correspondence

Mochizuki, Takuro 1

1 Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan
@article{GT_2009_13_1_a9,
     author = {Mochizuki, Takuro},
     title = {Kobayashi{\textendash}Hitchin correspondence for tame harmonic bundles {II}},
     journal = {Geometry & topology},
     pages = {359--455},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2009},
     doi = {10.2140/gt.2009.13.359},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.359/}
}
TY  - JOUR
AU  - Mochizuki, Takuro
TI  - Kobayashi–Hitchin correspondence for tame harmonic bundles II
JO  - Geometry & topology
PY  - 2009
SP  - 359
EP  - 455
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.359/
DO  - 10.2140/gt.2009.13.359
ID  - GT_2009_13_1_a9
ER  - 
%0 Journal Article
%A Mochizuki, Takuro
%T Kobayashi–Hitchin correspondence for tame harmonic bundles II
%J Geometry & topology
%D 2009
%P 359-455
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.359/
%R 10.2140/gt.2009.13.359
%F GT_2009_13_1_a9
Mochizuki, Takuro. Kobayashi–Hitchin correspondence for tame harmonic bundles II. Geometry & topology, Tome 13 (2009) no. 1, pp. 359-455. doi : 10.2140/gt.2009.13.359. http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.359/

[1] O Biquard, Fibrés de Higgs et connexions intégrables: le cas logarithmique (diviseur lisse), Ann. Sci. École Norm. Sup. $(4)$ 30 (1997) 41

[2] K Corlette, Flat $G$–bundles with canonical metrics, J. Differential Geom. 28 (1988) 361

[3] P Deligne, Équations différentielles à points singuliers réguliers, Lecture Notes in Math. 163, Springer (1970)

[4] S K Donaldson, Anti self-dual Yang–Mills connections over complex algebraic surfaces and stable vector bundles, Proc. London Math. Soc. $(3)$ 50 (1985) 1

[5] S K Donaldson, Infinite determinants, stable bundles and curvature, Duke Math. J. 54 (1987) 231

[6] J Eells Jr., J H Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964) 109

[7] C Hertling, C Sevenheck, Limits of families of Brieskorn lattices and compactified classifying spaces

[8] R Hotta, K Takeuchi, T Tanisaki, $D$–modules, perverse sheaves, and representation theory, Progress in Math. 236, Birkhäuser (2008)

[9] J N N Iyer, C T Simpson, A relation between the parabolic Chern characters of the de Rham bundles, Math. Ann. 338 (2007) 347

[10] J Jost, K Zuo, Harmonic maps of infinite energy and rigidity results for representations of fundamental groups of quasiprojective varieties, J. Differential Geom. 47 (1997) 469

[11] M Lübke, A Teleman, The universal Kobayashi–Hitchin correspondence on Hermitian manifolds, Mem. Amer. Math. Soc. 863 (2006)

[12] V B Mehta, A Ramanathan, Restriction of stable sheaves and representations of the fundamental group, Invent. Math. 77 (1984) 163

[13] T Mochizuki, Wild harmonic bundles and wild pure twistor $D$–modules

[14] T Mochizuki, Kobayashi–Hitchin correspondence for tame harmonic bundles and an application, Astérisque 309 (2006)

[15] T Mochizuki, Asymptotic behaviour of tame harmonic bundles and an application to pure twistor $D$–modules. II, Mem. Amer. Math. Soc. 185 (2007)

[16] C Sabbah, Polarizable twistor $D$–modules, Astérisque 300 (2005)

[17] C T Simpson, Constructing variations of Hodge structure using Yang–Mills theory and applications to uniformization, J. Amer. Math. Soc. 1 (1988) 867

[18] C T Simpson, Harmonic bundles on noncompact curves, J. Amer. Math. Soc. 3 (1990) 713

[19] C T Simpson, Higgs bundles and local systems, Inst. Hautes Études Sci. Publ. Math. (1992) 5

[20] C T Simpson, The Hodge filtration on nonabelian cohomology, from: "Algebraic geometry—Santa Cruz 1995", Proc. Sympos. Pure Math. 62, Amer. Math. Soc. (1997) 217

[21] C T Simpson, The construction problem in Kähler geometry, from: "Different faces of geometry", Int. Math. Ser. (N. Y.) 3, Kluwer/Plenum, New York (2004) 365

[22] K Uhlenbeck, S T Yau, On the existence of Hermitian–Yang–Mills connections in stable vector bundles, Comm. Pure Appl. Math. 39 (1986)

Cité par Sources :