Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let be any locally compact unimodular metrizable group. The main result of this paper, roughly stated, is that if is any finitely generated free group and any lattice, then up to a small perturbation and passing to a finite index subgroup, is a subgroup of . If is noncompact then we require additional hypotheses that include .
Bowen, Lewis 1
@article{GT_2009_13_5_a9, author = {Bowen, Lewis}, title = {Free groups in lattices}, journal = {Geometry & topology}, pages = {3021--3054}, publisher = {mathdoc}, volume = {13}, number = {5}, year = {2009}, doi = {10.2140/gt.2009.13.3021}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.3021/} }
Bowen, Lewis. Free groups in lattices. Geometry & topology, Tome 13 (2009) no. 5, pp. 3021-3054. doi : 10.2140/gt.2009.13.3021. http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.3021/
[1] Periodicity and circle packings of the hyperbolic plane, Geom. Dedicata 102 (2003) 213
,[2] Uniqueness and symmetry in problems of optimally dense packings, Math. Phys. Electron. J. 11 (2005)
, , , ,[3] Metric spaces of non-positive curvature, Grund. der Math. Wissenschaften 319, Springer (1999)
, ,[4] Mesures de Patterson–Sullivan sur le bord d'un espace hyperbolique au sens de Gromov, Pacific J. Math. 159 (1993) 241
,[5] Géométrie et théorie des groupes. Les groupes hyperboliques de Gromov, Lecture Notes in Math. 1441, Springer (1990)
, , ,[6] Aperiodic colorings and tilings of Coxeter groups, Groups Geom. Dyn. 1 (2007) 311
, ,[7] The proximity geometry of Riemannian manifolds, Uspehi Matem. Nauk (N.S.) 8 (1953) 189
,[8] A strongly aperiodic set of tiles in the hyperbolic plane, Invent. Math. 159 (2005) 119
,[9] Hyperbolic groups, from: "Essays in group theory", Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75
,[10] Surface subgroups of Kleinian groups with torsion, to appear in Invent. Math.
,[11] LERF and the Lubotzky–Sarnak conjecture, Geom. Topol. 12 (2008) 2047
, , ,[12] Aperiodic tilings of the hyperbolic plane by convex polygons, Israel J. Math. 107 (1998) 319
, ,[13] Kleinian groups with ubiquitous surface subgroups, Groups Geom. Dyn. 2 (2008) 263
,[14] Hausdorff dimension and conformal dynamics. I. Strong convergence of Kleinian groups, J. Differential Geom. 51 (1999) 471
,[15] A note on curvature and fundamental group, J. Differential Geometry 2 (1968) 1
,[16] Pentaplexity: a class of nonperiodic tilings of the plane, Eureka 39 (1978) 16
,[17] A volume invariant of coverings, Dokl. Akad. Nauk SSSR $($N.S.$)$ 105 (1955) 32
,[18] Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards, Invent. Math. 97 (1989) 553
,Cité par Sources :